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Abstract

We apply a new methodology for identifying pervasive and discrete changes (“breaks”) in

cross-sectional risk premia and find empirical evidence that these are economically impor-

tant for understanding returns on US stocks. Size, value, and investment risk premia have

fallen off to the point where they are insignificantly different from zero at the end of the

sample. The market risk premium has also declined systematically over time but remains

significant and positive as do the momentum and profitability risk premia. We construct a

new instability risk factor from cross-sectional differences in individual stocks’ exposure to

time-varying risk premia and show that this factor earns a premium comparable to that of

commonly used risk factors. Using industry- and characteristics-sorted portfolios, we show

that some breaks to the return premium process are broad-based, affecting all stocks regard-

less of industry- or firm characteristics, while others are limited to stocks with specific style

characteristics. Moreover, we identify distinct lead-lag patterns in how breaks to the risk

premium process impact stocks in different industries and with different style characteristics.
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1. Introduction

Equity risk premia play a key role for investment strategies in the stock market. Empirical

findings that stock characteristics such as book-to-market value, market cap, return momen-

tum, investment, and profitability are associated with sizeable risk premia have profoundly

impacted the investment industry with countless mutual funds specializing in investment

styles such as small caps, growth, value, or momentum stocks.1 The attractiveness of such

investment strategies hinges critically not only on the magnitude of the associated risk pre-

mia, but also on their stability over time. For example, high allocations to value or small-cap

stocks will be notably less attractive if the risk premia associated with these types of stocks

have been significantly reduced over time. Shifts in risk premia also introduce an additional

source of risk for investors, particularly if their impact varies across industries and firm

characteristics.

Recognizing the need to formally test for shifts in risk premia, Fama and French (2021)

report evidence of a substantial decline in the value risk premium but are unable to reject the

null hypotheses that the value premium (i) is constant across pre- and post-1992 subsamples

and (ii) is zero in the post-1992 subsample. However, their test uses just a handful of

portfolios and likely has low power given the inherent noise in monthly premia. Moreover,

the use of portfolios may mask the risk-return tradeoff in underlying stocks (Lewellen et al.

2010). Finally, they do not consider if their break date (1992) is the break location supported

by the data or if there are more than a single break.

In this paper, we propose a novel approach to test for and model instability in risk

premia which exploits information in large cross-sections of individual stock returns. Our

approach is very flexible and does not assume that the dates of any breaks or even the

number of breaks is known in advance. Using cross-sectional information turns out to be

key to our ability to accurately estimate the location and magnitude of shifts to risk premia.2

In turn, more accurate estimates of risk premia enhance our ability to test hypotheses such

as constant risk premia, zero risk premia at the end of the sample, or even a monotonically

1Several studies have found that firm characteristics are priced, e.g., Fama and French (1993); Berk et al.
(1999); Carlson et al. (2004); Zhang (2005); Carlson et al. (2006); Novy-Marx (2013).

2Data on individual stocks for improved estimation of risk premia has also recently been used to deal
with the errors-in-variables bias by Jegadeesh et al. (2019).
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declining pattern in risk premia, allowing us to sharpen the conclusions about risk premia

in Fama and French (2021).

Using monthly returns data on a sample of more than 23,000 stocks from 1950 to 2018,

we find strong evidence of four breaks in a six-factor model that allows for breaks in the

intercept (“alpha”), risk premium coefficients, and idiosyncratic volatility. The break dates

are located at July 1972, October 1981, June 2001, and October 2008, thus coinciding with

the oil price shocks of the early seventies, the change in the Fed’s monetary policy regime,

the crash of the Tech bubble, and the Global Financial Crisis (GFC).

We find that the market equity, value, and size risk premia all vary significantly over

time and have declined systematically over the nearly seven decades covered by our sample,

with particularly large declines observed for the size and value premia. Conversely, after

an initial decline in the early seventies, the momentum risk premium has recovered and is

back to a level close to its value in the 1950s. Investment and profitability risk premia were

notably higher during the two decades from 1981 to 2001 but have come down markedly

in subsequent years. Tests conducted on the final (post-2008) regime do not reject the null

hypothesis that the size, value, and investment risk premia have fallen to zero. We also

cannot reject the null that the size and value risk premia have declined monotonically over

the last seven decades. Conversely, we strongly reject that the market, momentum, and

profitability risk premia are zero in the last regime and that they have declined uniformly

over time. Our evidence suggests that all four breaks are broad-based and affect both

the risk premium coefficients as well as individual stock alphas and idiosyncratic volatility

parameters.3

We next examine the cross-sectional asset pricing implications of instability in the risk

premium process. Stocks with different (style) characteristics have different exposures to

variation in risk premia and so should also vary in how vulnerable they are to instability in

risk premia. Stocks with greater exposure to instability risk should earn a greater instability

risk premium provided that instability risk is priced in the cross-section.

To see if this prediction holds, we construct a break risk factor using the difference

between forecasts of individual stock returns from models with and without breaks. We

3Evidence of mispricing is much stronger during the early part of our sample, declining significantly after
2001. It is also far greater for the less liquid microcaps compared to larger stocks.
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use this break risk factor to explore whether stocks with the largest sensitivity to the

break risk factor earn higher returns than stocks with lower break sensitivity. We find

that returns on break sensitivity-sorted portfolios increase monotonically with the high-

sensitivity quintile of stocks earning a statistically significant 3.4% higher annual return

than the low-sensitivity quintile of stocks. Similarly, Fama-MacBeth regressions that control

for other stock characteristics such as market beta, size, value, prior return performance,

investment, and profitability, show that the break characteristic obtains a similar level

of significance as the investment characteristic and is more significant than size, book-to-

market, momentum, and profitability.

To better understand the portfolio implications of instability in risk premia, we next ex-

amine which stock characteristics – e.g., industry and investment style – are associated with

high exposure to instability risk. To this end, we use industry and characteristics-sorted

portfolios to dissect differences in break sensitivity. Across industries, we find that Telecom-

munication, Utility, Oil, Business Equipment, and Financial stocks exhibit the greatest

break sensitivity. Conversely, stocks in the Wholesale, Textile, Mining, Books, and Meals

industries exhibit the smallest break sensitivity. Small firms’ returns are more sensitive to

breaks while big firms are the least sensitive. Conditional on size, value firms are more

sensitive to breaks than growth firms, firms with conservative investments and robust prof-

itability tend to be more sensitive than aggressively investing firms with weak operating

profits, and loser stocks are more sensitive than winner stocks.

Next, we explore the economic drivers of breaks by generalizing the common break

framework introduced by Smith and Timmermann (2021) to allow breaks to be noncommon,

possibly hitting any subset of series in the cross-section at different times. This analysis,

which uses the methodology developed by Smith (2018a), allows us to (i) differentiate

between market-wide and style-specific breaks; and (ii) identify whether certain industry

or characteristic-sorted portfolios are affected earlier or later in the breakpoint cycle. Some

breaks (e.g., 1973, and 2008) are very broad and affect stocks across multiple industries and

investment styles. Other breaks are more specific to individual styles or industries and so

do not have the same broad-based effects.

Inspecting the speed at which different portfolios are affected by breaks, we find that

Financials, Telecommunication, Retail, Services, Steel, Chemicals, Oil, and Construction
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are generally among the first industries to be affected by breaks to risk premia. Moreover,

the lead-lag relation varies across breaks with Financials playing a leading role during the

1929 market crash and Global Financial Crisis, while Telecommunication stocks were leading

during the dotcom crash and Oil stocks were leading in 1973. The speed of information

diffusion has increased over time as the lead-lag delay time between the first and last

affected industries has clearly been reduced. Style portfolios also differ in how rapidly they

are affected by breaks: momentum portfolios are generally among the earliest to be affected

with loser stocks leading winner stocks. Similarly, large stocks tend to be affected earlier

by breaks than small stocks, growth stocks generally move earlier than value stocks, firms

with weak profitability move earlier than firms with robust profitability, and firms with

conservative investments are among the last ones to be affected by breaks.

Our paper is related to a number of recent studies providing empirical evidence that

cross-sectional risk premia associated with a broad array of firm-level characteristics vary

considerably through time, reaching unusually high levels of volatility during economic crises

and periods with elevated distress in financial markets. Freyberger et al. (2020) and Gu

et al. (2020) document significant time variation in the mapping from a variety of firm-

level predictors to expected returns. Gagliardini et al. (2016) find that risk premia are

large and volatile in crisis periods and deviate considerably from the path implied by a

constant-parameter model. Ang and Kristensen (2012) use a nonparametric approach to

estimate and track time variation in the factor loadings of conditional CAPM or multi-

factor models. Adrian et al. (2015) propose regression-based estimators of dynamic asset

pricing models that capture time-variation in beta loadings and risk premia.4 Using a

present value model setup, Smith and Timmermann (2021) examine how breaks in regression

coefficients affect time-series predictability of returns. Relative to that study, we use cross-

sectional information to study instability in the risk premia of a range of both classic and

more recently proposed investment style characteristics. We analyze which types of firm

characteristics are associated with the greatest exposure to break risk and also show how

the timing of the breaks varies across characteristics and industries. Moreover, we examine

4Such instability is mirrored across a broad range of asset classes and investment styles; using a century
of data on six asset classes, Ilmanen et al. (2019) find considerable evidence of time variation in single-factor
returns and volatility for value, momentum, carry, and defensive investment strategies.
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how cross-sectional heterogeneity in break sensitivities across stocks can be used to form a

break risk factor which we demonstrate is priced and highly significant.

The outline of the paper is as follows. Section 2 introduces our methodology, including

the return regressions and prior specifications. Section 3 presents our data and empirical

evidence of breaks. Section 4 constructs our cross-sectional break risk factor and compares

it with existing risk factors from the finance literature. Section 5 focuses on the timing and

effect of breaks in return regressions conducted for different portfolios of stocks sorted by

industry or investment style. Section 6 concludes. Web appendices contain technical details

and analyses of out-of-sample return predictability and portfolio allocation implications.

2. Methodology

This section introduces our panel regression approach to modeling discrete and pervasive

shifts in the risk premium process. We justify our assumption of discrete, pervasive shifts

or “breaks” in return premia in three ways. First, a key feature of our approach is that it

allows us to identify economically large and long-lasting regime shifts as opposed to smaller

and more local variation in risk premia. Focusing on breaks that are pervasive allows us

to fully exploit the rich information available in the cross-section of stock returns. Second,

and consistent with the idea of discrete shifts in risk premia, the changes that we identify

empirically are associated with important economic events and coincide with large shifts in

aggregate valuation measures such as the dividend-price ratio of the market portfolio. From

an asset pricing perspective, large movements in valuation ratios is exactly what one would

expect when risk premia shift. Third, we use economically motivated priors to ensure that

the variation in risk premia falls within ranges that are economically plausible.5

We follow recent studies and estimate risk premia directly in a single step from regres-

sions of firms’ stock returns on a set of stock or firm characteristics. For characteristics

that can be directly measured without error, this single-step regression approach avoids

errors-in-variables problems. Stock betas and volatility measures, are, however, estimated

in a first step and for these variables the error-in-variables problem remains.

5Pástor and Stambaugh (2001) identify breaks in the equity premium process and use transition regimes
to link adjacent regimes.
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We next explain the details of our Bayesian panel break approach which builds on

the framework of Fama and French (2020) who demonstrate that stacking Fama-Macbeth

regressions across time gives rise to a factor model representation.6 We generalize this

framework to allow for structural breaks that capture factor risk premia which undergo

discrete shifts at unknown times.

2.1. Estimating time-varying risk premia

Suppose we observe a panel of monthly stock returns rit, measured in excess of a risk-free

rate, on i = 1, . . . , Nt firms over a sample t = 1, . . . , T .7 Moreover, let Xit−1 denote a

vector of firm or stock characteristics for firm i observed at time t − 1. Characteristics

could include observable features such as firm size, book-to-market ratio, investment, and

profitability or estimated stock characteristics such as (factor) betas or return momentum.

Fama and French (2020) demonstrate that, when stacked across t, cross-sectional regres-

sions of returns on lagged firm characteristics become factor models that can be estimated

using time-series information. Building on this insight, consider the regression model

rit = αi + rzt + λ′tXit−1 + εit, εit ∼ N(0, σ2
i ). (1)

From Fama and French (2020), the slope estimates λt are portfolio returns that can be

interpreted as factors with pre-specified time-varying factor loadings (characteristics) and rzt

is the month-t return on a regular portfolio comprising the left-hand-side assets with weights

summing to one when all explanatory variables are set to zero. This return component is

therefore common to all stocks.8 Finally, αi captures any mispricing of asset i.9

The model in Equation (1) and conventional time series factor models both attempt

6A related literature finds evidence of breaks in expected equity returns. For example, Pástor and
Stambaugh (2001) find 15 structural breaks in estimates of the U.S. equity premium from a data set spanning
approximately 150 years. Bekaert et al. (2002) identify common breaks in return models and link them to
global equity market integration.

7Our panel approach can easily accommodate variation in the number of stocks at time t, Nt.
8To obtain this component, we employ the common correlated effects framework of Pesaran (2006),

effectively extracting rzt from the cross-sectional average return.
9In a model without the intercept, αi, Fama and French (2020) note that the time series average of εit

will capture mispricing of asset i. To enable us to capture shifts in mispricing, we explicitly include αi and
impose that ε has mean zero.
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to explain variation in returns. However, there are also important differences between the

two approaches. The time series approach uses factors that are prespecified, e.g., from

sorts of stocks on book-to-market equity, size, investment, profitability or prior returns and

optimizes over the factor loadings which are assumed to be time-invariant. Conversely,

estimates of Equation (1) optimize over the common return component (rzt) and the factor

returns λt so as to minimize the sum of squared residuals given the prespecified time-varying

factor loadings.

The time-series average return on a factor is often used to estimate its risk premium.

For example, the historical mean (excess) return on the market portfolio is commonly used

as an estimate of the equity risk premium. However, if risk premia remain constant within

certain blocks of time (“regimes”) but can shift across regimes, then risk premia should be

computed only on the data from the same regimes.10 To capture possible time variation

in risk premia, we therefore generalize the model in (1) to allow any subset of the factor

risk premia, mispricing parameters (alphas), and volatilities to shift an unknown number

of times (K) at unknown locations τ = (τ1, . . . , τK), producing K + 1 separate regimes.

We initially assume that the breaks are common and affect all assets at the same time,

but subsequently relax this assumption. The assumption that breaks to return premia have

a pervasive effect on the cross-section of stock returns effectively allows us to use the full

cross-section of returns to identify breaks in the risk premium process, vastly increasing the

power of our approach. It also ensures that we only identify breaks to the risk premium

process that are truly common.

Our panel break model for stock returns thus takes the following form:

rit = αik + rzt + λ′kXit−1 + εit, εit ∼ N(0, σ2
ik), t = τk−1 + 1, . . . , τk. (2)

Here λk denotes the expected risk premia that are constant within the kth regime, while αik

denotes the degree of mispricing of asset i in state (“regime”) k. Our baseline model uses six

lagged characteristics (Xit−1) – market beta, size, book-to-market, momentum, investment,

and profitability – and estimates variation in the associated risk premia across regimes.

10Pástor and Stambaugh (2001) estimate time variation in the U.S. equity risk premium as the average of
market excess returns within regimes that are separated by structural breaks.
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Given our large cross-section of stocks, estimating a full covariance matrix in each regime

is not possible. We therefore adopt a common factor structure to absorb dependence across

stocks and assume that the remaining residuals in Equation (2) are uncorrelated. While this

may seem a strong assumption, the model that we take to the data includes the common

factor rzt to absorb common variation in returns.11 In fact, as we demonstrate below, the

assumption of uncorrelated residuals – conditional on including our common factor rzt – is

supported by the data. Moreover, using the approach of Pesaran (2006) we also extend our

baseline model to include latent common factors that absorb any remaining correlation in

the residuals: εit = γ′ift + uit.

To capture changes to cross-sectional risk premia in Equation (2), we use a Bayesian

panel break methodology that accounts for uncertainty about breaks.12 Our approach

builds on and extends that of Smith and Timmermann (2021) who examine how breaks in

regression coefficients affect time-series predictability of returns in a present value setting.

Conversely, building on Fama and French (2020) our analysis here identifies breaks to pooled

cross-sectional risk premia that load on firm-specific characteristics.

2.2. Prior distributions

Before continuing with the analysis, we next explain our choice of priors which follows

conventional practice and specifies Gaussian distributions over the slope coefficients and

conjugate inverse gamma priors over the residual variances.13

The choice of priors should be guided by asset pricing theory and reflect what is eco-

nomically plausible in terms of the magnitude of any deviations from the underlying factor

pricing model. Throughout our paper, benchmark returns are either excess returns or re-

turns on zero-investment (long-short) portfolios. In this case, conventional asset pricing

models imply that αk = (α1k, . . . , αNk) = 0N in the kth regime (Huberman et al. 1987).

Centering αk a priori at zero, the specification of σα reflects the prior belief that the pricing

11Bai and Ng (2002) estimate that just two factors is sufficient to capture variation in the cross-section of
U.S. stock returns.

12Frequentist approaches, such as Bai and Perron (1998) and Baltagi et al. (2016), ignore break uncertainty
and may therefore compromise small-sample inference (Pástor and Stambaugh 2001).

13For a detailed description of the prior choices, see Appendix B.
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model holds. Setting σα = 0 corresponds to a dogmatic belief that the pricing model holds

with absolutely no mispricing. Conversely, setting σα = ∞ reflects a prior belief that any

degree of mispricing is equally likely. Small values of σα reflect prior beliefs that are skep-

tical about the existence of mispricing but do not rule it out entirely; larger values reflect

stronger prior beliefs that there may be some mispricing.

Further, we choose our prior to ensure that an economically unreasonable high Sharpe

ratio is unlikely since this would give rise to an approximate arbitrage opportunity by

generating high expected returns without being exposed to much risk (Shanken 1992).14

This scenario could arise if a high intercept estimate, αik, coincides with a low idiosyncratic

volatility, σik. Our prior places very little weight on this scenario by linking the intercept

to the residual volatility (MacKinlay 1995; Pástor and Stambaugh 1999; Pástor 2000).15

Following Pástor and Stambaugh (1999), our baseline analysis adopts a moderate prior

belief by setting σα equal to 5%. We apply the same prior belief that the αik values are

centered at zero across all regimes, i.e., that the degree of mispricing is constant. This does

not rule out that some assets may be more mispriced in one regime and less mispriced in

another because residual volatilities are allowed to vary across regimes.

Finally, our prior assumes that breaks occur, on average, every twenty years, though we

also consider a ten-year prior. The prior on the slope coefficients λk is Gaussian. The prior

hyperparameter σλ controls the degree of shrinkage applied: the smaller this hyperparame-

ter, the more the slopes get pulled toward zero. We specify a moderate degree of shrinkage

by setting σλ equal to 0.08 (Wachter and Warusawitharana 2009).

14Dybvig (1983) and Grinblatt and Titman (1983) use residual variances to study how much any given
asset can depart from a factor model. Shleifer and Vishny (1997) argue that high volatility can introduce
limits to arbitrage and thus cause a given asset to be mispriced.

15The Gaussian prior on the intercept is conditional on the residual volatility and thus the variance of
the intercept combines the residual variance and the prior variance σ2

α. Since the prior on αik is centered at
zero, a low residual variance will shrink the intercept estimate towards zero, making a value far from zero
highly unlikely. As the residual variance increases, the intercept is pulled less strongly toward zero and thus
intercept estimates further away from zero become more likely.
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3. Instability in risk premia

This section introduces our returns data and presents empirical evidence on the presence

of pervasive breaks to the risk premia of the Fama-French factors and momentum. We also

examine shifts in the mispricing parameters (alphas) and in the return volatility parameters.

3.1. Data

We use monthly data on a total of N = 23, 664 stocks observed between January 1950 and

June 2018 sourced from CRSP, Compustat, and I/B/E/S. Our sample includes stocks listed

on the NYSE, AMEX and NASDAQ. Stocks are only included if they have a market value

on CRSP at the end of the previous month and a value for common equity in the firm’s

financial statement.

Data are compiled on 94 firm characteristics detailed in Green et al. (2017). Table

A1 of the Web Appendix lists the variables and the corresponding acronyms.16 We relate

stock returns to characteristics measured at the end of the previous month and assume

that annual (quarterly) characteristics are available in month t − 1 if the firm’s fiscal year

(quarter) ended at least six (four) months before month t− 1.17

3.2. Break Locations

Our empirical analysis focuses on a six-factor model obtained by regressing firm-level ex-

cess stock returns on an intercept, market beta (β̂), size (SIZE), book-to-market (BM),

16This table corresponds to Table 1 of Green et al. (2017) and is only included for reference. We are
grateful to Jeremiah Green for making available on his website SAS code to extract the data from CRSP,
Compustat and I/B/E/S.

17A more detailed explanation of the characteristics is provided in the Appendix of Green et al. (2017).
Characteristics are cross-sectionally winsorized at the 1st and 99th percentiles of their monthly observations.
The I/B/E/S statistical period date and CRSP monthly end date are used to align I/B/E/S and CRSP data
in calendar time.
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momentum (MOM), investment (INV ), and profitability (PRF ):

rit = αik + rzt + λMKT,kβ̂it−1 + λSIZE,kSIZEit−1 + λBM,kBMit−1

+ λMOM,kMOMit−1 + λINV,kINVit−1 + λPRF,kPRFit−1 + εit. (3)

Measurement of the six characteristics follows Green et al. (2017) so that market beta is

estimated using weekly returns and equal-weighted market returns for the three-year period

ending in month t − 1 (with at least 52 weeks of returns), size is the natural logarithm of

market capitalization measured at the end of month t − 1, book-to-market value is the

book value of equity divided by the prior fiscal year-end market capitalization, momentum

is computed as the 11-month cumulative return from month t − 12 through month t − 2,

investment is computed as annual change in gross property, plant, and equipment plus

annual change in inventories all scaled by lagged total assets, and profitability is computed

as revenue minus cost of goods sold minus SG&A expense minus interest expense divided

by lagged common shareholders’ equity.

This six-factor model is widely used in empirical work which makes it important to

investigate the stability of the associated risk premia. Subsequently, we also consider evi-

dence of instability in the expected return premia of a much larger model that includes all

94 characteristics from the data set of Green et al. (2017).

Figure 1 displays the posterior probabilities of the number (top window) and location of

breaks (bottom window) affecting the parameters of the six-factor model. Approximately

75% of the posterior weight is assigned to a model with four breaks with most of the remain-

ing 25% roughly evenly distributed among models with three and five breaks, respectively.

Given the strong evidence of four breaks, our empirical analysis focuses on this model, but

it is important to bear in mind that our Bayesian approach accounts for uncertainty about

both the number of breaks and their location.18 Detailed discussion of our formal definition

of breaks is provided in Appendix D.

The location of each of the four breaks is estimated quite accurately. The four posterior

mode break dates are July 1972, October 1981, June 2001, and October 2008 with around

18Only 1.2% of the posterior probability is assigned to one break, and 2.2% to two breaks. The probability
of no breaks is zero down to the third decimal.
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75% of the probability assigned to one particular month.19

3.3. Breaks in expected return premia

We next consider how the risk premia vary across the five regimes identified by the four

breaks displayed in Figure 1. The solid black lines in Figure 2 display the evolution in the

equity, value, size, momentum, investment, and profitability risk premia, i.e., the values of

the λk parameters in Equation (3). In addition, the solid green line in the top left panel

shows the equity risk premium obtained from a single-factor (CAPM) model. Following

Pástor and Stambaugh (2001), the red dotted lines in each panel further show the posterior

standard deviation of the risk premia estimated from the 6-factor model. These standard

deviations are quite stable across regimes and vary in a fairly tight band around 1%.

Starting with the single factor CAPM, the equity risk premium varies from 5.9 to 6.7%

in the two regimes prior to 1981, declines to a slightly lower range between 5.2 and 6.2% in

the next two regimes, before falling to 3.3% after 2008. These are economically plausible

values and suggest a marked decline in the equity risk premium after the GFC. The equity

risk premium obtained from the six-factor model (solid black line in top left panel) evolves

along a similar path, although it shows a smaller decline in the final regime.20

Next, consider the evolution in the risk premium associated with the book-to-market

ratio (top right corner). This declines monotonically from 3.8% per year prior to 1972 to

0.6% in the period after the GFC. Hence, over the course of our sample, the value risk

premium has declined by more than four-fifths of its initial level, suggesting a sizeable

reduction in the amount by which returns on value stocks have outpaced growth stocks.

The size premium (middle left panel) shows a similar erosion from 4% per year prior to

1972 to 1.9% after 1981, followed by a further reduction to 0.7% after the GFC. Hence, the

size premium seems largely to have disappeared over the sample.

19Figure A1 in the web appendix shows results based on a prior of a 10-year break frequency as opposed
to the 20-year prior used here. Using the 10-year prior on the break frequency, we detect the same break
dates as under the 20-year prior plus one additional break in the late-1990s, corresponding to the collapse of
Long Term Capital Management and the Asian Financial Crisis. Most of the risk premia in this short-lived
regime are temporarily elevated, so the overall effect on our results from changing the prior is marginal.

20Unlike Pástor and Stambaugh (2001) we do not impose a smoothness condition which imposes that the
equity risk premium gradually transitions between regimes.
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The momentum premium (middle right panel) behaves very differently. Starting at 4.6%

per annum in the first regime, this premium drops to 1.6% over the course of the next two

regimes before reversing course and increasing to 3.5% after 2008.

The investment and profitability risk premia are notably higher during the middle

decades in our sample but have come down markedly in recent years. Specifically, the

investment premium (bottom left panel) starts out at 1.6% prior to 1973, increases sharply

to 6.2% in 1973 and exceeds 5% until 2001. At this point, the investment premium drops

to 0.9% before declining further to a statistically insignificant level (0.3%) after 2008. The

profitability risk premium (bottom right panel) starts out at 2.3% prior to 1973, declines

to 0.8% in the second regime only to rise above 6% from 1982 to 2001. However, the prof-

itability risk premium then declines quite sharply and finishes at 2.5% in the final regime.

We conclude from these findings that the market equity, value, and size risk premia all

have undergone secular declines over the nearly seven decades covered by our sample. The

reductions are largest for the size and value premia which, at the end of our sample, are

close to zero. Conversely, after declining sharply in the early seventies, the momentum risk

premium has subsequently risen steadily and is now close to its original value in the early

sample. The investment and profitability risk premia increase markedly during the middle

portion of our sample but weaken substantially after 2001. In the final (post-2008) regime,

the investment risk premium is insignificantly different from zero while the profitability

premium remains significant.

To formally evaluate the empirical validity that our factor model leaves no significant

cross-sectional dependence among the idiosyncratic shocks, we estimate average pairwise

correlations between residuals and compute the test for cross-sectional dependence (CD)

proposed by Pesaran (2021) which, under the null of no dependence, has a standard Normal

distribution. For our data, the CD statistic is 1.72 so we cannot reject the null hypothesis

of no cross-sectional dependence remaining in the residuals.21 One might be concerned with

the test’s ability to detect cross-sectional dependence if negative and positive correlations

have an offsetting effect. As it turns out, the vast majority of correlations are positive

so this effect is unlikely to be severe in our setting. To alleviate any remaining concerns,

21The CD test might also be viewed as a test against weak dependence. For large panels (N > 10) like
ours, weak dependence is unlikely to cause any serious problems for inference (Pesaran 2015).
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however, we further employ the CDlm test of Breusch and Pagan (1980) which uses squared

correlations. The CDlm statistic is 1.85, so again we cannot reject the null hypothesis of

no cross-sectional dependence remaining in the residuals. While the CDlm test can exhibit

considerable size distortions in settings with large N and short T , our setting has large N

and large T so any size distortions of the test are likely to be small.

As a further robustness check, we estimate a version of our model that allows for a latent

common factor in residuals: εit = γ′ift + uit. Reassuringly, the baseline results are robust

to this change, implying that the common factor rzt successfully absorbs the majority of

cross-sectional dependence in return variation. Specifically, the CD statistic is reduced

from 1.72 to 1.67, the CDlm statistic is reduced from 1.85 to 1.73, and the average pairwise

correlation is reduced from 0.17 to 0.15. The estimated break dates and risk premia remain

almost identical when we add this factor.

3.4. Formal tests for time-varying and declining risk premia

Fama and French (2021) find that the value premium has diminished considerably since

1991.22 Constructing six portfolios sorted on size and book-to-market, they report that the

annualized value premium fell from 4.3% (1963-1991) to 0.6% (1992-2019) for large caps

and from 7% to 4% for small caps. They cannot reject the null hypothesis that the risk

premium is zero in the second subsample, but also cannot reject that the value premium is

constant across the two subsamples. However, their tests likely have low power as they use

just a handful of portfolios and monthly risk premia tend to be highly volatile.

Exploiting information in a large cross-section of individual stocks, as we do here, cir-

cumvents this problem and increases our ability to detect shifts in risk premia. To examine

whether our estimates imply that risk premia have vanished, the upper panel of Table 1

displays the final regime’s six-factor risk premium estimates (expressed as annualized per-

centages) and corresponding t-statistics (in brackets below) from our panel break model

that regresses firm-level excess returns on market beta, size, value, momentum, investment,

and profitability as displayed in Equation (3). In the final regime (2008-2018) the value

22Schwert (2003) and Linnainmaa and Roberts (2018) also report that the value premium has declined
over time.
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premium (0.63%) is not significantly different from zero. Similarly, at 0.70% and 0.31% per

year, we cannot reject the null that the size and investment premia have gone to zero in the

final regime. Conversely, with t-statistics of 4.21, 3.02, and 2.27, respectively, we strongly

reject the null that the market equity (4.68%), momentum (3.47%) and profitability risk

premia (2.48%) equal zero in the last regime. These results demonstrate that our approach

can be used to test which risk premia remain significant at the end of the sample versus

which ones are sufficiently small so as to be insignificantly different from zero.

To more directly compare our findings to those in Fama and French (2021), we next

impose a single break at the same time (1991) as that assumed by Fama and French (2021)

and use our methodology to estimate risk premia. The results, displayed in the middle panel

of Table 1 show that the value premium declined from an annualized 3.36% (1950-1991)

to 1.53% (1992-2018). In contrast to the results in Fama and French (2021), using Bayes

factors we find overwhelming evidence in favor of a significant change in the value premium

before and after 1991.23 This demonstrates the added power that comes from using the full

cross-section to test for changes in risk premia.

Our finding of stronger evidence in favor of the break in 1991 relative to that found

by Fama and French (2021) could be driven by our use of Bayes factors to test the null

hypothesis of no break as opposed to our use of a larger cross-section. To address this

possibility, we first compute the Bayes factor when imposing the 1991 break on the 3 ×

2 portfolios used by Fama and French (2021). This Bayes factor is 2.42, implying little

or no evidence in favor of the break. Second, we implement a conventional Chow test by

estimating the model on the full cross-section of stocks with a break dummy that equals

zero for the data up to 1991 and changes to unity in 1992. The resulting p-value for the

associated F -statistic equals 0.006, so a conventional stability test strongly rejects the null

that the value premium is constant across the two subsamples. These results support our

assertion that the value premium has declined since 1991 and show that it is our use of a

large cross-section of returns that yields additional power to draw this conclusion.

23Bayes factors are constructed from the marginal likelihood of each model computed using the method of
Chib (1995) and are the preferred Bayesian model comparison approach as they integrate over all parameters
in the model and inherently penalize model complexity. Bayes factors between 1 and 3 are inconclusive,
values between 3 and 20 indicate positive evidence in favour of our baseline model, while values greater
than 20 indicate strong evidence (Kass and Raftery 1995). The Bayes factor of 179.87 reported in the table
therefore represents very strong evidence against the null of unchanged risk premia.
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Alquist et al. (2018) report that the size effect diminished shortly after its publication.

Using the same Bayes factor approach with the full cross-section of stocks to test for a single

break in the size premium occurring at 1981, again we find overwhelming evidence in favor

of the break. Specifically, the size premium declined from an annualized 4.20% (1950-1981)

to 0.65% (1982-2018).

These tests show that risk premia have changed over time but do not reveal whether

there has been a systematic downward trend. To examine this point, we separately test

whether each of the six risk premia monotonically decline over the five regimes. To do

this, we use the Monotonic Relation test developed by Patton and Timmermann (2010)

which is nonparametric, does not require a functional form (i.e. linear), and is easy to

implement using bootstrap methods. Under the null, the risk premium is constant or weakly

increasing across regimes, while under the alternative it is monotonically decreasing. When

the bootstrap p-value is less than 0.05, we conclude that the risk premium is significantly

monotonically decreasing.

Results from this test are displayed in the lower panel of Table 1. There is clear evidence

of significant monotonically decreasing value and size risk premia (p-value below 0.05) across

our five regimes. However, the equity, momentum, investment, and profitability risk premia

are not significantly monotonically decreasing, in line with Figure 2.24

3.5. Breaks vs. time-varying parameters

Our approach assumes that changes in model parameters are rare but discrete. This per-

spective allows us to more sharply identify the locations at which the largest changes took

place.25 Depending on which events led to the change in the parameters, at other times we

might expect parameter changes to be more gradual.

To test whether a time-varying parameter model with smoothly-evolving parameters

might better approximate the underlying data generating process compared with our break-

24Studies that suggest the equity premium has declined over time include Blanchard (1993), Jagannathan
et al. (2001), and Fama and French (2002).

25Jochmann et al. (2013) also find that the parameters of their return prediction models sometimes change
very rapidly.

16



point approach, we estimate the following specification:26

rit = αit + rzt + λMKT,tβ̂it−1 + λSIZE,tSIZEit−1 + λBM,tBMit−1

+ λMOM,tMOMit−1 + λINV,tINVit−1 + λPRF,tPRFit−1 + εit (4)

with εit ∼ N(0, σ2), and the parameters, θt = (αt, rzt, λt), follow a random walk

θt = θt−1 + ut, (5)

in which ut ∼ N(0, Q) and Q = Diag(φ1, . . . , φ6) is a diagonal matrix so the state innova-

tions are conditionally independent. We further assume that the initial value is Normally

distributed θ0 ∼ N(θ,Q).

To measure the strength of evidence in favor of our breakpoint specification relative

to this time-varying parameter specification, we next compute a Bayes factor. The Bayes

factor (83.19) suggests strong evidence in favor of our discrete break specification using

standard threshold values. To alleviate concerns that this conclusion may be influenced by

our assumption that the innovations are uncorrelated in the time-varying parameter model,

we re-estimate the model allowing for cross-sectional dependence. The Bayes factor relative

to this model is notably lower (27.23), illustrating the importance of allowing for cross-

sectional dependence when modeling the underlying data generating process. Nonetheless,

the evidence in favor of our discrete breakpoint approach relative to the slow-moving co-

efficients in the time-varying parameter model remains strong even after accounting for

cross-sectional error dependence in the time-varying parameter model.

That model parameters sometimes change very rapidly in a way that is well approxi-

mated by discrete breaks is confirmed by inspecting five-year rolling window average esti-

mates of factor risk premia. For example, fluctuations in the size premium tend to be quite

sharp, rather than slow moving. Moreover, the risk premia estimated from the time-varying

parameter model sometimes change very sharply, e.g., by 150 basis points over one or two

months for the momentum factor. These observations support our formal Bayes factor test

which strongly favors breakpoints as opposed to time-varying parameters.

26Cogley and Sargent (2005) and Primiceri (2005) propose popular time-varying parameter specifications.
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3.6. Aggregate and idiosyncratic volatility

The top panel of Figure 3 graphs the aggregate volatility obtained from our Bayesian panel

breakpoint model in Equation (3), estimated as the standard deviation of rzt in each regime.

Aggregate volatility starts just below 15% per year, rises to 17.1% in 1972, before mono-

tonically declining throughout the remainder of the sample, reaching 14.4% in the final

regime (2008-2018), its lowest value of the sample. The posterior standard deviation of this

aggregate volatility - shown in a dotted line at the bottom of the panel - varies in a range

between 2.2% and 4.5%, with variation tending to be lower in the longer-lived regimes.

Our approach also allows the volatility of the idiosyncratic error term εit to vary across

regimes. To see how the average idiosyncratic volatility evolves over time, the lower panel

of Figure 3 graphs the value-weighted average of firm-level residual volatility estimates

through our sample, expressed as an annualized percentage. In the first regime (1950-1972),

idiosyncratic volatility is very low, amounting to just 9.8% per year. Average idiosyncratic

volatility then nearly doubles in 1972, before further rising to 29.1% per year in 1981 and

to 39.1% in 2001.27 After 2008, idiosyncratic volatility comes down substantially, declining

to 25%. The posterior standard deviation of the residual volatility mostly follows a parallel

path, rising from 3.0% in the first regime to 13.2% in the final regime.

3.7. Mispricing

To gain insights into how any mispricing has evolved over time, Table 2 evaluates the cross-

sectional distribution of α estimates. For each of the five regimes, we report the average

posterior mean and standard deviation along with various percentiles of the annualized

percentage α estimates from regressions of firm-level stock returns on market beta, size,

value, momentum, investment, and profitability as displayed in Equation (3). The final

column reports the proportion of individual firm-level alpha estimates that are significantly

different from zero at the 5% level, using a two-sided test. In each panel, the bottom row

shows the same statistics obtained from a model without breaks fitted to the full sample.

27Consistent with these findings Campbell et al. (2001) report that firm volatility has increased markedly
from 1962 to 1997.
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All alpha estimates use full sample information and so could not have been exploited in real

time for improved investment performance. The regime-specific alpha estimates, as they use

shorter samples, are more strongly affected by estimation error than the constant-parameter

estimates shown in the bottom row. In practice, this means that the cross-sectional range

of alpha estimates within each regime is somewhat wider than is normally the case.

With this caveat in mind, first consider the top panel (all stocks). In the full sample,

the mean alpha estimate is 0.40%, or 40 basis points (bps) per annum with an inter-quartile

range from -0.67% to 2.24% and a standard deviation of 2.85. Moving to the individual

regimes, we find stronger evidence of mispricing in the early parts of our sample: the mean

alpha estimate is around 2.5% per year in both the first (1950-1972) and third (1981-2001)

regimes and the 75th percentile is more than twice as high in these regimes as its average,

full-sample value. In these early regimes, sizeable proportions (24% and 21%) of the alpha

estimates are significantly different from zero.28

Evidence of mispricing in individual stocks has been markedly reduced over time, how-

ever, and the mean alpha estimates are negative, at -0.25% and -0.60% per year, in the final

two regimes. Although the range of alpha estimates is wider in these regimes than they are

in the full sample, this can to a large extent be attributed to the greater effect of sampling

error in the shorter-lived regimes. Indeed, the proportion of stocks whose alpha estimates

are significantly different from zero is much smaller in the final two regimes – six and four

percent, respectively – than in the full sample (17%).29

We would expect to find stronger evidence of mispricing in the six-factor model among

the smallest, most illiquid stocks that are harder to trade. To see if this is indeed the

case, the middle and bottom panels of Table 2 show separate results for larger stocks and

micro caps. Consistent with our expectation, the interquartile range of alpha estimates is

far wider for micro caps (-18.98%; 12.79%) than for the larger stocks (-0.52%; 1.95%). The

percentage of stocks with significant alpha estimates is also larger for micro caps than for

the larger stocks.

28Because many, possibly correlated, alpha test statistics are being considered here, caution should be
exercised when interpreting this evidence due to the associated multiple hypothesis testing problem.

29Table A2 in the web appendix shows, for each regime, percentiles of the distribution of the posterior
standard deviations of the α estimates. Posterior standard deviations of the α estimates tend to be no-
tably higher in certain regimes such as the 2001-2008 period, highlighting the importance of accounting for
estimation error in models with unstable parameters.
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We conclude from these findings that there is substantial ex-post evidence of time-

variation in mispricing for individual stocks during our sample and that (i) the mispricing

is much stronger during the early parts of our sample, declining significantly after 2001;

and (ii) mispricing is stronger for micro caps than for large stocks.

3.8. Which model parameters are affected by instabilities?

Our empirical analysis up to this point uncovers strong evidence that alphas, risk premia,

and idiosyncratic volatilities change across the five regimes identified by our model. How-

ever, while we have inspected the magnitude of the shifts in these parameters across regimes,

we have not formally tested whether all parameters change at the break dates or whether

they are unaffected by regime shifts.

To address this point, we next conduct formal hypothesis tests that disentangle which

parameters are most affected by instabilities. Specifically, we estimate several restricted

versions of the baseline model that allow for breaks in (i) mean coefficients (α and λ) only,

(ii) idiosyncratic volatility (σ) only, (iii) α only, and (iv) λ only. To gauge the strength of

evidence in favor of our general baseline model relative to each restricted model, we again

compute Bayes factors. The results, displayed in Table 3 for the full sample, i.e., across

all breaks, as well as on a break-by-break basis, show overwhelming evidence that all four

breaks are broad-based and affect both the mean and volatility parameters. Focusing on

the mean coefficients, there is also strong evidence that all four breaks hit both the risk

premia (λ) and pricing errors (α).

We conclude that there is strong support for discrete regime shifts in the parameters of

the simple six-factor return regression model in Equation (3). Moreover, these shifts are

broad-based, economically large, and highly statistically significant.

3.9. Breaks and Macroeconomic Risks

Studies such as Lettau et al. (2008) argue that variation in macroeconomic risk helps explain

movements in the equity risk premium. Using quarterly data from 1952:1 to 2002:4, these

authors identify a structural break in 1992 at which point volatility declines, and they find
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a striking correlation between movements in macroeconomic risk and the stock market.

To see if a similar relationship holds for our data, we next examine if low frequency

movements in macroeconomic risk are related to low frequency movements in the market

equity risk premium identified by our CAPM estimates. Computing the average real un-

certainty measure from Jurado et al. (2015) and Ludvigson et al. (2021) within the regimes

identified by our baseline model, along with our CAPM equity risk premium estimate (the

green line in the top-left panel of Figure 2), we find a 0.63 correlation (across regimes)

between the two series.30 Our CAPM equity premium estimate is also highly correlated

with low frequency movements in the dividend-price ratio. The average dividend-price ratio

within regimes identified by our model has a 0.28 correlation with our CAPM equity risk

premium estimate.31

We next address whether exposure to such regime shifts is itself a source of risk that is

priced in the cross-section of equity returns.

4. Break Risk Factor

The empirical evidence in the previous section shows that risk premia associated with stock

or firm characteristics such as market betas, size, book-to-market value, return momentum,

investment, and profitability are affected by pervasive and economically large breaks. Expo-

sure to this type of instability in risk premia introduces a separate source of risk in individual

stock returns as well as returns on portfolios focusing on particular investment styles. For

example, investors holding small value stocks will be exposed to the risk that size and value

premia change in a manner that makes their return distribution more difficult to estimate

and predict than if risk premia were constant. Break risk matters particularly to long-term

buy-and-hold investors who do not rotate their portfolio allocations very frequently, but

can also be important to short-term investors because of the challenges associated with

detecting breaks and updating estimates of risk premia in real time.

30Recursive, real-time estimates of our break probabilities are also positively correlated with the monthly
real (0.13 correlation), macroeconomic (0.17), and financial (0.19) uncertainty measures taken from Jurado
et al. (2015) and Ludvigson et al. (2021). These uncertainty measures tend to spike around our posterior
mode break dates, as do our real-time break probability estimates.

31Our CAPM equity risk premium estimate has a similar positive, and even more pronounced, correlation
with the earnings-price ratio (0.33).
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These arguments suggest that instability in the risk premium process is itself a source

of risk that could give rise to a break risk factor. This is economically plausible because the

breaks identified by our approach occur during economic and financial crises. Stocks more

exposed to major macroeconomic events and financial crises might plausibly be expected

to earn higher returns as compensation for risk exposure to “bad states”.

4.1. Individual stocks’ exposure to instability risk

To establish whether instability risk is economically important, we must demonstrate that

(i) regime shifts are pervasive and affect the returns of multiple stocks or portfolios; (ii)

exposure to instability risk is priced in the cross-section and stocks with greater exposure to

this type of risk earn higher returns, on average, than stocks with low exposure, assuming

that instability risk does not hedge against other sources of risk.

The first point (pervasiveness) is indirectly established by the fact that we use a panel

regression approach to identify common breaks in style risk premia. Because our approach

penalizes large models with many parameters, it is highly unlikely to identify regime shifts

that only affect a small subset of stocks. To further strengthen this point, we provide formal

evidence in Section 5 that a wide set of industry and style-sorted portfolios are affected by

changes in regimes.

To address the second point, we need a measure of how much individual stocks are

affected by breaks which we can use to sort stocks into portfolios with high and low break

sensitivities. Moreover, we need to be able to compute this measure in real time before

performing the portfolio sorts.

To measure individual stocks’ sensitivity to instability risk, we build on a literature that

links large changes in consumption growth and heightened macroeconomic uncertainty, both

features of the break dates identified by our empirical analysis, to variation in aggregate

valuation measures such as the price-dividend ratio. For example, disaster risk models

such as Barro (2009), Gabaix (2012), Martin (2013), and Wachter (2013) imply that assets

whose prices fall when a disaster occurs have a higher expected return because of their

higher exposure to disasters. This is similar to the mechanism in our analysis where stocks

with a higher exposure to break risk earn a higher risk premium. Similarly, Berkman et al.
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(2011) find that their crisis severity index is positively correlated with the earnings-price

ratio and dividend yield, while Lettau and Van Nieuwerburgh (2008) show that breaks to

the steady state dividend growth rate can lead to parameter instability in regressions of

returns on the lagged dividend-price ratio.

Using these insights, we estimate a panel break model that relates individual stock

returns to the lagged value of the aggregate log dividend-price ratio, dpt−1:32

rit = αik + βikdpt−1 + εit, t = τk−1 + 1, . . . , τk. (6)

Next, using a 10-year warm-up estimation period we generate out-of-sample return forecasts

from Equation (6) estimated with and without breaks. For each stock, i, and each month

in the sample, t, we then compute the difference between forecasts from the panel model

with breaks (r̂it,Brk) and without breaks (r̂it,NoBrk):

BRKit = r̂it,Brk − r̂it,NoBrk, i = 1, . . . N, t = 121, . . . , T. (7)

BRKit is larger for stocks with greater exposure to break risk, and we refer to this as

stock i’s break risk characteristic (at time t). Finally, as we next describe, we examine if

differences in such exposures translate into differences in risk premia.

4.2. Fama-MacBeth Regressions

We evaluate the ability of our break risk measure in Equation (7) to explain the cross-section

of returns by estimating cross-sectional regressions each month

rit = rzt + λBRK,tBRKit−1 + λ′2tXit−1 + εit, (8)

where Xit−1 contains the five Fama-French factors plus momentum. Next, following the

Fama-MacBeth methodology, we use the time-series estimates of λBRK,t and λ′2t to evaluate

32Empirically, Paye and Timmermann (2006) and Rapach and Wohar (2006) find evidence of breaks
in the slope coefficient of the dividend-price ratio in return regressions such as Equation (6). Smith and
Timmermann (2021) also provide evidence of breaks in the relation between stock returns and the lagged
dividend-price ratio using data on individual stock returns but do not address whether these breaks are more
important to particular types of stocks (“styles”).
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the mean and standard deviation of these slope coefficients.

The first column of the top panel of Table 4 displays the results. The break risk factor

obtains nearly the same significance as the investment variable in explaining the cross-

section of returns and its t-statistic is approximately one-and-a-half times larger than that

of the size, book-to-market, momentum, and profitability variables. Average returns are

also higher for firms highly exposed to break risk than for those with the smallest exposure.

To corroborate that our results are not overly sensitive to the proposed measure of break

risk exposure, columns 2-5 in Table 4 present results using alternative proxies of the break

risk factor. Our second measure uses the root-squared difference between forecasts produced

by panel models fitted with and without breaks. The third, fourth and fifth columns

use the difference at each point in time in the intercept, slope and volatility parameters,

respectively, estimated from panel models with and without breaks. All five measures are

highly statistically significant.33

Following Novy-Marx (2013), the bottom panel of Table 4 reports results from the

same analysis on break risk measures that have been demeaned by industry. The results

are broadly similar, except the t-statistic of every break risk measure is increased, so that

adjusting the risk measure by industry obtains even more power to explain the cross-section

of expected returns.

These results demonstrate the robustness of our findings. From herein we focus on the

break risk factor measured by the difference between the forecasts produced by the panel

models with and without breaks in Equation (7).

4.3. Sorts on break sensitivity

Running Fama and MacBeth (1973) regressions on individual stocks places considerable

emphasis on micro-cap stocks that make up a sizable share of the number of stocks but only

account for a small fraction of the total market capitalisation. Such regressions may also

be sensitive to outliers and impose a potentially misspecified parametric relation between

33All results use Newey and West (1987) heteroskedasticity-adjusted t-statistics. The third measure (based
on the intercept) has the least power to explain the cross-section of expected returns but still obtains a
significant t-statistic of 2.53.

24



the variables, compromising subsequent inference.

To alleviate this concern, we next construct value-weighted portfolios sorted according to

our instability risk factor and provide a nonparametric test of the hypothesis that exposure

to break risk predicts average returns in the cross-section. Table 5 displays results for these

portfolios sorted on our break risk factor. The first row (“Low”) shows results for the bottom

quintile of stocks ranked by break sensitivity, while the fifth row (“High”) shows results for

the stocks most sensitive to breaks. Column one reports the average monthly return earned

by each quintile portfolio, followed by the alpha and slope coefficients obtained from time-

series regressions of the portfolio returns on the five Fama-French factors and momentum

with t-statistics reported in brackets below.

Returns on the break-sorted portfolios increase monotonically with our risk factor and

the high-sensitivity quintile portfolio earns a 0.28% higher average monthly return than

the low-sensitivity portfolio, equivalent to an annualized return premium of 3.36% which is

statistically significant at the 5% level with a t-statistic of 2.33.

Turning to the risk-adjusted performance from the six-factor regressions, once again we

see monotonically increasing values of alpha as we move from the least to the most break-

sensitive stocks. Moreover, the alpha estimate of both the least break-sensitive stocks (at

-0.15% per month) and the most break-sensitive stocks (at 0.19%) are both significantly

different from zero. At 0.34% per month or more than 4% annualized, this difference is also

economically large.

To alleviate concerns about transaction costs raised by Novy-Marx and Velikov (2015)

and Hou et al. (2020), we follow Chordia et al. (2020) and perform the same analysis omitting

all stocks with a price below $3 or a market capitalisation below the 20th percentile of the

NYSE capitalisation distribution. The bottom panel of Table 5 displays the results which,

while marginally weaker, tell the same basic story.

These results provide further cross-sectional evidence of the existence of an economically

important break risk factor. Stocks whose expected return processes are most sensitive to

the instability in risk premia identified by our methodology earn both higher average returns

(about 3% per year) and higher risk premia (about 4% per year) than stocks with the lowest

sensitivity to breaks.

25



4.4. Break risk and other risk factors

The past two decades has seen an explosion in the number of factors that reportedly explain

the cross-section of expected returns. Amidst this ‘factor zoo’ (Cochrane (2011)) it is

important to address whether our proposed break risk factor remains significant even after

accounting for the presence of other candidate risk factors.34 To this end we first consider

the relation between the break risk factor and existing risk factors. The upper panel in

Table 6 reports pairwise correlations among a number of factors, including the market,

book-to-market, size, momentum, investment, profitability, and break risk factors. Our

break risk factor is relatively weakly correlated with the five Fama-French risk factors and

momentum, with correlations ranging from -0.26 (momentum) to 0.28 (market).

The middle panel reports the maximum as well as the 10th, 25th, 50th, 75th and 90th

percentiles of the correlations between our break risk characteristic in Equation (7) and

the other 94 characteristics. These characteristic correlations are computed for each series

in the cross-section and the table reports the average over the cross-section. The median

(maximum) correlation is 0.10 (0.42), consistent with no other single characteristic or factor

being able to explain the majority of the variation in break risk.

The five characteristics most strongly correlated with our break risk characteristic are,

in descending order, idiosyncratic return volatility, return volatility, volatility of liquidity

(share turnover), cash flow to debt, and cash flow volatility. Evidently break risk con-

tains information related to both return and cash flow volatility. Interestingly, not even a

combination of these five characteristics explains much of the variation in break risk. A

regression of break risk on the five characteristics produces an R2 of 0.24, supporting our

claim that break risk contains genuinely new information that is not spanned by existing

characteristics or risk factors.

34Using a high t-statistic threshold of three, Harvey et al. (2016) identify approximately 150 factors.
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4.5. Risk Factors in Individual Regimes

Which risk factors are most important may vary over time. Our approach is ideally suited

for addressing such time variation through panel break regressions

rit = αik + rzt + λBRK,kBRKit−1 + λ′2,kXit−1 + εit, t = τk−1 + 1, . . . , τk, (9)

where λBRK,k denotes the risk premium on our break risk factor and λ2,k captures the risk

premium estimates on the remaining 94 characteristics in the kth regime.35

Table 7 reports the outcome of estimating Equation (9) on our panel of firm-level stock

returns. For each regime identified by our model, we show the characteristics that earn

significant risk premia using a t-statistic threshold of three as proposed by Harvey et al.

(2016). The total number of selected characteristics in each regime is reported at the bottom

of the table.36

In total, 24 different factors (out of 95) get selected at least once in our sample. Only

the market risk factor gets selected in every regime. The size (market value) and book-to-

market risk factors both get selected in the first three regimes, but not in the final, consistent

with our findings in Figure 2 that risk premia on these factors are waning. The momentum

risk factor is selected in the third and fourth regimes while neither of the investment and

profitability risk factors get selected in any of the regimes.

Our proposed break risk factor gets selected in the last three regimes, i.e., the period

from 1981-2018. This is strong evidence that the break risk factor is important in explaining

cross-sectional variation in stock returns. In fact, besides the three Fama-French risk factors

and our break risk factor, none of the other risk factors gets selected in more than a single

regime, indicating that the explanatory power of these factors is not stable over time.

Interestingly, the number of factors that gets selected in an individual regime peaks at 12

during 2001-2008 before dropping sharply to only three factors in the final regime. Only

35Smith (2018b) performs Bayesian model selection of the 94 characteristics, allowing for model un-
certainty and multiple breaks in the set of characteristics that independently inform the cross-section of
expected returns. Here, we further include our proposed break risk characteristic to evaluate whether it
holds information about the cross-section of returns that is not spanned by the 94 characteristics.

36The break dates are aligned with those identified in our earlier six-factor model.
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the market risk factor, momentum, and our break risk factor get selected after 2008.37

We conclude from this evidence that only five factors – market risk, size, book-to-value,

momentum, and our new break risk factor – have consistent power over cross-sectional

variation in stock returns for the majority of the sample. This is a new finding and illustrates

the kind of insights our approach can be used to provide. In fact, as shown in the bottom

panel of Table 7, a constant-parameter approach that uses the full data sample to select

factors chooses 16 factors, failing to separate out the many factors whose effect on the

cross-section of stock returns is confined to short sub-samples from those factors with a

more robust effect.

5. Pervasiveness and timing of Breaks to Industry and Characteristics-sorted

Portfolios

Cross-sectional returns data on individual stocks, the main focus up to this point, can be

used to boost the power of our ability to detect breaks. Conversely, returns on more broadly

diversified portfolios formed along industry, characteristics or “style” lines can be used to

understand whether certain types of firms are more affected by break risk than others,

helping us better interpret the economic sources and investment consequences of exposure

to break risk.

Pursuing this idea, this section estimates our panel break model on a set of industry and

characteristics-sorted portfolios. Next, using these portfolios, we introduce the noncommon

breakpoint procedure developed by Smith (2018a) which allows breaks to hit any subset of

series in the cross-section and at different times. This approach enables us to accomplish

three tasks: (i) distinguishing between market-wide and industry or style-specific breaks;

(ii) evaluating whether particular assets are hit earlier or later in the break cycle; and (iii)

evaluating whether lead-lag relations vary through time. For instance, one might expect

37Green et al. (2017) acknowledge that the assumption of time invariance implicit in the majority of firm
characteristic studies is unlikely to hold after 1980 because of “changes in the volume, nature, and costs
of trading in stocks that occurred from 1980 to 2014, including Reg. FD, the decimalization of trading
quotes, Sarbanes-Oxley, accelerated SEC filing requirements, auto quoting, and computerized long/short
quantitative investment”. Without using a formal test, they identify instability in the number of selected
characteristics which falls from 12 to two after 2003. Our approach finds a similar reduction from 12 to
three factors slightly later (after 2008).
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that the oil industry played a leading role during the 1970s, telecommunications during the

early-2000s, and financials/real estate during 2008.

5.1. Break Risk for Industry and Style Portfolios

We start by estimating our panel break model using monthly excess returns on 30 value-

weighted industry portfolios and sets of 5× 5 portfolios sorted on size and book-to-market,

size and momentum, size and investment, or size and profitability. For the industry port-

folios and the 5× 5 portfolios sorted on size and either book-to-market or momentum, our

data run from July 1926 through December 2019. This longer sample of portfolio returns

provides a way to cross-validate the robustness of our findings on the effect of breaks on

individual firms’ returns. For the 5 × 5 portfolios sorted on size and either investment or

profitability, the data begin in July 1963. Data are sourced from Ken French’s website.

To identify differences and similarities in how breaks affect different types of stocks, our

analysis is undertaken separately for the five sets of test portfolios using the specification in

Equation (6). This allows us to address whether breaks are specific to particular investment

styles or industries, or whether they are more pervasive and affect most or all portfolios.

First consider the evidence of breaks in the model fitted to the 30 industry portfolio

returns. For the 1926-2019 sample, the mode (and mean) for the number of breaks is six,

with approximately 88% of the probability mass distributed between five and six breaks,

corresponding to a break occurring roughly once every fifteen years. The timing for most of

the breaks is well defined with posterior probabilities concentrated around 1929, 1973, 2001,

and 2008, thus coinciding with major economic events such as the Great Depression, the

oil price shocks of the 1970s, the dotcom crash in the early-2000s, and the Global Financial

Crisis. Reassuringly, in the sub-sample that overlaps with the individual stock returns data

(1950-2018), the break dates identified for the industry portfolio returns are either the same

or very close. Compared to the results for the individual stocks, the posterior probability

mass for the break locations is more disperse, indicating that the effect of breaks on different

industry portfolios was not confined to a single month but diffused gradually through time.

A similar number of breaks is identified for the 25 portfolios sorted on size and either

book-to-market or momentum. For example, the model fitted on the portfolios sorted on size
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and book-to-market identifies seven breaks with similar locations to those for the industry

portfolios.38

Having established the similarity in both the number and location of breaks across

different portfolios, we next analyze which portfolios exhibit the greatest sensitivity to

breaks. To this end, we rank portfolios by their sensitivity to breaks as measured by

the mean squared difference between forecasts from models estimated with and without

breaks.39

The top panel in Table 8 shows break sensitivity results for the top and bottom quintile of

industries. Returns on telecommunication stocks exhibit the greatest sensitivity to breaks,

followed by the utilities, oil, business equipment, and financial industries. Stocks in the

wholesale, mining, textile, books and meals industries are least sensitive to breaks. Cyclical

industries thus appear to be more sensitive to breaks than non-cyclical industries and the

break sensitivities of the first group tend to be three to four times greater than those of the

latter group of industries.

Among the 25 portfolios sorted on size and book-to-market ratio (second panel in Table

8), small firms’ returns are most sensitive to breaks and big firms least sensitive. Differences

in break sensitivity are economically large with small firms’ break sensitivity being six to

seven times larger than that of large firms. Though size matters more to break sensitivity

than book-to-market value does, there is also a clear relation between firms’ book-to-market

ratios and their break sensitivity. Conditional on firm size, value firms are more sensitive

to breaks than growth firms and there is a near-monotonically decreasing relation between

book-to-market ratio and break sensitivity.

Similar findings hold for the stocks sorted on size and momentum (third panel in Table

8). Conditional on firm size, “loser” stocks with the smallest prior returns are more sen-

sitive to breaks than “winner” stocks with a near-monotonic decreasing relation between

prior returns and break sensitivity. Conditional on firm size, firms with conservative invest-

ments and robust profitability tend to be more sensitive to breaks in their risk premia than

aggressive-investment firms with weak operating profits (bottom two panels), consistent

38This finding is not automatic since we estimate our panel break model separately for the industry returns
and the 5 × 5 characteristics sorted portfolios and so the break detection could be very different.

39Our results are robust to using other sensitivity measures such as the standard deviation of the estimated
intercept, slope coefficient or residual variance across regimes.
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with these types of firms being riskier and having higher required returns than their peers

(Novy-Marx 2013; Fama and French 2015).

These findings suggest that firms normally thought of as being riskier (small firms with

high book-to-market ratios, conservative investments and robust profitability) have greater

exposure to breaks in their return processes. Firms with poor prior-year return perfor-

mance also tend to be more exposed to break risk which could be related to the occasional

resurgence in the returns of “loser” stocks documented by Daniel and Moskowitz (2016).

5.2. Market-wide versus Characteristics-specific breaks

We next evaluate whether the breaks are market-wide or specific to certain industries or

styles such as size, value, momentum, investment or profitability using (excess) returns on

50 value-weighted portfolios (10 univariate decile sorts on each of size, value, momentum,

investment, and profitability).

Adopting the methodology developed by Smith (2018a), we allow any subset of assets

1 ≤ Nk ≤ N to be affected by the kth break occurring at the common time τk. This is

accomplished by generalizing Equation (6) to

rit = αik + βikdpt−1 + εit, t = τk−1 + 1, . . . , τk (10)

in which βik+1 = βik for those portfolios that are not hit by the kth break. Conversely, the

common break assumption in the baseline model in Equation (6) restricts all portfolios to

be hit by breaks (Nk = N for all k).

Starting with the style-sorted portfolios, Figure 4 displays the estimated break dates for

the model in Equation (10). In ranked order, portfolios 1 through 10 track decile portfolios

ranked on return momentum (winners followed by losers), portfolios 11 and 20 represent

the highest and lowest decile of book-to-market-sorted portfolios (value and growth, respec-

tively), and decile portfolios 21 and 30 contain the smallest and biggest firms sorted on

market capitalization. Finally, deciles 31 and 40 contain the most and least profitable firms

(robust and weak), while deciles 41 and 50 contain the firms with the lowest and highest

investments (conservative and aggressive), respectively. Our sample period goes back to
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1926 so that, in addition to the four post-war breaks identified in the baseline analysis, we

detect a further three breaks in 1929, 1933, and 1940.

The figure nicely illustrates that some breaks are very broad and affect all style-sorted

portfolios while other breaks have a more limited impact. For example, three breaks (in

1929, 1973, and 2008) are common across all investment styles for which data are avail-

able;40 one break (1933) is specific to just one style (size) while the remaining three breaks

affect multiple styles, but not all five. Moreover, conditional on a break affecting a given

investment style, almost all of the decile portfolios within that style are affected by the

break. The breaks we identify are, thus, systematically linked to the style characteristics

considered here as they affect stocks across the entire characteristics spectrum.

Applying the same approach to the industry portfolios, we find that almost all industries

are affected by each of the breaks. Moreover, while the two earliest breaks affect 25 and

26 of the industries, respectively, the last two breaks affect 29 and 30 of the industry

portfolios, suggesting that the breaks have become more pervasive over time. Firms in

different industries are likely to have non-zero loadings on the style factors which helps

explain why the vast majority of industries are affected by each of the breaks even when

some style portfolios are not impacted by all breaks.

5.3. Speed of adjustment to breaks

Studying the speed with which different types of stocks react to breaks can provide insights

into the underlying economic drivers of such breaks. Indeed, stocks with different style-

or industry characteristics may react more or less rapidly to breaks due to the gradual

dissemination of information about breaks which is likely to take time to uncover and

process. Hou (2007) reports that slow information diffusion across sectors is a primary

driver of lead-lag dynamics in return predictability, causing the lead-lag relation between

big and small firms to occur primarily within industries. The effect is caused by a slow

reaction to negative information. The lead-lag effect is larger for firms that are smaller, less

competitive, and neglected. Hong et al. (2007) find that the returns of industries such as

40Data on the investment and profitability-sorted portfolios only begin in 1963, so the effect of the 1929
break on these styles cannot be analyzed.
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retail, services, commercial real estate, metal, and petroleum lead the aggregate market by

up to two months. Similarly, Croce et al. (2019) report evidence that the lead-lag relation

across firms varies through time.41

These findings suggest that information diffusion across markets is gradual and that the

aggregate stock market responds to information in industry returns with a lag. Generalizing

the model in Equation (10) to allow the timing of breaks to vary across assets, we have

rit = αik + βikdpt−1 + εit, t = τki−1 + 1, . . . , τki (11)

where now τki denotes the time at which the ith portfolio is hit by the kith break.42 The

common break assumption in the baseline model in Equation (6) restricts all portfolios

to be hit at the same time as τki = τk for all i and k. By relaxing this assumption, the

noncommon break model in Equation (11) captures the possibility of shifts in the lead-lag

pattern in which individual return series are affected by breaks.

Figure 5 displays the timing of the noncommon breaks across the 30 industries for four

of the most economically interesting break dates, namely 1929, 1973, 2001, and 2008. The

leading industries identified by our approach are broadly aligned with those identified by

Hong et al. (2007) as Financials, Telecommunication, Retail, Services, Steel, Chemicals,

Oil, and Construction are the first industries to be affected by breaks to the return process.

Some of the leading industries, such as Oil, Financials, and Telecommunications are also

most sensitive to risk as can be seen from Table 8.

Allowing the lead-lag relations to vary through time turns out to be empirically impor-

tant. For instance, Financials had a leading role during the 1929 Wall Street Crash (top left

window) and the Global Financial Crisis (bottom right), while Telecommunication stocks

were the first to be affected by the break associated with the dotcom crash (bottom left),

and Oil stocks were affected earlier than other sectors by the break associated with the oil

price shock of 1973 (top right).

The speed of information diffusion across different industries, as measured by the delay

41Croce et al. (2019) find that the telecommunications industry became more leading from 1995 to 2000,
real estate during the early-2000s, and finance after 2005. Consumer goods leads national output by about
one month, manufacturing lags by about two months, and business equipment lags consumer goods by nearly
three quarters.

42For full details of the model and estimation we refer the reader to Smith (2018a).
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between the first and final industry hit by a break, has increased over time. The average

lead-lag delay across the first four industry breaks is 8.25 months while it equals 3 months

across the final three breaks.

We next undertake a similar analysis across the 50 style-sorted portfolios, i.e., 10 uni-

variate sorts on each of size, value, momentum, profitability, and investments. Using the

same methodology and focusing on the same four breaks as in Figure 5, Figure 6 reveals

several interesting patterns. First, momentum portfolios tend to be among the earliest to be

affected by breaks, with “loser” stocks moving before “winner” stocks. Second, size-sorted

portfolios tend to be affected before stocks sorted on book-to-market ratio, with large stocks

moving before small stocks. Stocks sorted on book-to-market tend to move slowest–with

growth stocks generally moving before value stocks–and are even not hit altogether in the

case of the break associated with the Dotcom bubble. Firms with weaker profitability were

affected slightly earlier by the major breaks in our sample than firms with more robust

profitability. Stocks of firms with an aggressive investment style tend to move relatively

late in the break cycle but slightly earlier than more conservatively investing firms.

In summary, our analysis uncovers a number of new insights. First, we show that far

from being stable, the lead-lag patterns in portfolio returns vary considerably over time and

are related to the cause of the event triggering the break. Second, we show that stocks with

low prior-year returns tend to be affected before stocks with high prior-year returns, that

large caps are affected before small caps (consistent with Lo and MacKinlay (1990)), and

that value stocks tend to be affected later than growth stocks. Finally, weak-profitability

firms with conservative investments move slightly earlier than firms with robust profitability

and more aggressive investments.

5.4. Industry timing premium

Our finding that industries and investment styles are affected at different speeds by breaks

in risk premia begs the question whether firms that are hit earlier by breaks earn a “timing

premium” relative to those that are hit later. Stocks whose returns move earlier tend to be

more important for the price discovery process and should be more highly correlated with

the market, justifying a positive timing premium. Consistent with this, Croce et al. (2019)
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find that firms in leading industries pay an annualized return that is 4% higher on average

than that paid by firms in lagging industries, with 1.5-2% being a pure timing premium

on advance information. The pure timing premium captures cross-sectional heterogeneity

in the timing of exposure to shocks and is isolated by accounting for cross-sectional het-

erogeneity in exposure to shocks, as pointed out by Bansal et al. (2005). Similarly, Savor

and Wilson (2016) show that firms scheduled to report earnings earlier in the cycle earn an

abnormal return of almost ten percent per year.

To examine this point, we recursively estimate the noncommon breaks model in Equation

(11) on the 30 industry portfolio returns, in which the coefficients are unit-specific to absorb

cross-sectional heterogeneity in exposures while allowing cross-sectional heterogeneity in

the timing of the breaks and thus isolating a pure timing premium on advance information.

Next, we sort the industry portfolios into quintiles based on the timing of the final breakpoint

detected. A zero-cost investment strategy that goes long in the top (leading) and short

in the bottom (lagging) quintile portfolios earns an annualized alpha of 1.3% which is

statistically significant–with a t-statistic of 2.91–even after controlling for the market, size,

value, momentum, investment, and profitability factors.

6. Conclusion

We present new evidence of instability in the mapping from characteristics such as firm size,

book-to-market ratio, return momentum, investment, and profitability to expected returns,

with the market equity risk, size, and value premia undergoing marked reductions over time.

The breaks we identify line up closely with major economic shocks, including the oil price

shocks in the seventies and the Global Financial Crisis in 2008.

We show that individual firms display very different degrees of sensitivity to instability

in the risk premium process and use this to form a break risk factor that goes long in

the most break-sensitive stocks and shorts the least break-sensitive stocks. This break risk

factor obtains similar or even stronger significance than conventional size, value, momentum,

investment, and profitability factors in Fama-MacBeth regressions.

Our evidence reveals that the impact and lead-lag timing of instability risk vary sig-

nificantly across firms in different industries and with different size, value, momentum,
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investment, or profitability characteristics. Stocks with poor past returns (“losers”), large

market capitalization, and low book-to-market ratios tend to be affected earlier by breaks

than stocks with high past returns, small market capitalization, and high book-to-market

ratios. Firms in the telecommunication, utility, oil, business equipment and financial sec-

tors are most affected by break risk, while firms in the meals, books, textiles, mining and

wholesale industries are least impacted. Similarly, small value stocks are more strongly af-

fected by break risk than large growth stocks as are small stocks with low prior-year returns

compared with large stocks with high prior-year returns.

Results from an out-of-sample analysis reported in a web appendix show that our

panel break model can be used to generate more accurate return forecasts than alterna-

tive constant-parameter and time-varying parameter benchmarks. When these forecasts

are used by a moderately risk averse mean-variance investor to form portfolios, this leads

to a rotation out of industry portfolios that are hit early in the breakpoint cycle, such as

oil after 1973, telecommunications after 2001, and financials after 2008, and results in gains

in annual certainty equivalent returns around two percent. Over the seven decades covered

by our sample, the major shift we identify in risk premia is associated with a substantial

decline in the optimal allocation to small caps and value stocks.

The breaks we uncover are all associated with major economic shocks and financial mar-

ket distress which thus appear to have a long-lasting impact and give rise to new regimes

with significantly altered risk premia. Notably, size and value risk premia are insignifi-

cantly different from zero in the period after 2008. This pattern is quite different from the

mechanism in disaster risk models in which risk premia settle back to their historical mean

once the disaster probability returns to normal levels. Similarly, compared with long-run-

risk models, our results suggest that the risk premium process can be quite stable for long

periods of time but is interrupted by large, pervasive shifts triggered by episodes of eco-

nomic and financial distress. Although these episodes are relatively rare, their long-lasting

impact on risk premia means that they have an important effect on cross-sectional return

predictability patterns, investment performance and portfolio choice.
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Table 1: Risk premium tests

Equity Value Size Momentum Investment Profitability

Positive risk premium tests (Final regime: 2008-2018)

Risk premium 4.68 0.63 0.70 3.47 0.31 2.48
t-stat (4.21) (0.72) (0.45) (3.02) (0.89) (2.27)

Single breakpoint tests

Bayes factor (1991) 179.87
Risk premium (1950-1991) 3.36%
Risk premium (1992-2018) 1.53%

Bayes factor (1981) 162.43
Risk premium (1950-1981) 4.20%
Risk premium (1982-2018) 0.65%

Monotonic relation tests

0.16 0.01 0.03 0.19 0.17 0.14

Table 1: Risk Premium Tests. The upper panel of this table displays the final regime’s risk premium
estimates (expressed as annualized percentages) and corresponding t-statistics (in brackets below) from
the Bayesian panel break approach when regressing firm-level excess returns on market beta, value, size,
momentum, investment, and profitability as displayed in Equation (3). The middle panel displays the
results of two separate single breakpoint tests: a break in the size premium at 1981 and a break in the
value premium at 1991. Bayes factors express the strength of evidence in favor of the break – values
greater than 150 represent overwhelming evidence in favor of the break Kass and Raftery (1995). We
also report pre- and post-break risk premium estimates. The lower panel displays p-values from Patton
and Timmermann (2010)’s Monotonic Relation tests when testing separately whether each of the six
factor risk premia monotonically decline across the five regimes identified by the baseline model. p values
lower than 0.05 imply significant evidence in favor of monotonically declining risk premia.
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Table 2: Cross-sectional Distribution of α Estimates

Regime Mean St.dev. 5% 10% 25% Median 75% 90% 95% sig.

All stocks

1950:01-1972:07 2.61 1.40 -3.52 -1.80 0.50 2.53 4.59 7.85 9.70 0.24

1972:08:-1981:10 -1.38 2.32 -14.73 -7.91 -2.82 -0.02 1.78 4.00 5.79 0.18

1981:11-2001:06 2.54 3.37 -11.67 -4.42 0.50 2.79 5.92 9.59 13.82 0.21

2001:07-2008:10 -0.25 5.10 -21.02 -10.73 -2.25 1.42 4.00 8.41 12.97 0.06

2008:11-2018:06 -0.60 5.67 -20.04 -9.84 -1.68 0.99 3.30 7.76 12.80 0.04

Full sample 0.40 2.85 -6.90 -4.89 -0.67 0.42 2.24 4.57 7.10 0.17

Larger stocks (Micro-caps excluded)

1950:01-1972:07 2.37 1.00 -2.68 -1.40 0.55 2.30 4.52 6.87 8.32 0.28

1972:08:-1981:10 -1.05 1.41 -10.98 -7.03 -2.65 -0.00 1.69 3.62 4.94 0.13

1981:11-2001:06 2.79 1.57 -7.55 -3.06 0.60 2.91 5.70 8.72 11.49 0.22

2001:07-2008:10 0.20 2.11 -14.68 -8.30 -1.88 1.41 3.65 7.31 10.33 0.05

2008:11-2018:06 0.03 2.07 -14.65 -7.44 -1.47 0.94 3.12 6.64 9.90 0.04

Full sample 0.72 1.06 -5.92 -3.60 -0.52 0.40 1.95 4.04 6.25 0.15

Micro-caps

1950:01-1972:07 4.21 4.93 -28.44 -14.02 -10.92 -6.12 14.40 20.00 33.11 0.36

1972:08:-1981:10 -9.20 8.04 -45.33 -42.18 -29.04 -24.03 11.03 17.52 30.13 0.24

1981:11-2001:06 -1.21 13.22 -67.82 -46.86 -29.51 -20.14 25.31 39.87 50.07 0.34

2001:07-2008:10 -10.44 20.77 -111.85 -86.95 -52.21 -32.69 33.74 53.82 87.12 0.10

2008:11-2018:06 -15.76 21.22 -142.33 -107.24 -56.20 -32.38 31.11 56.12 62.18 0.07

Full sample -4.84 8.02 -44.33 -34.31 -18.98 -9.38 12.79 19.89 33.05 0.23

Table 2: Cross-sectional distribution of α estimates. The top panel of this table displays, for each of
the five regimes, the cross-sectional average and standard deviation of the posterior mean αi estimates, as well
as the 5th, 10th, 25th, median, 75th, 90th, and 95th percentiles of the αi estimates from our Bayesian panel
break approach when regressing firm-level excess returns on market beta, size, value, momentum, investment,
and profitability as displayed in Equation (3). All values are in annualized percentage terms. The final column
reports, for each regime, the proportion of stocks that have αi estimates that are significantly different from zero
at the 5% level using a two-sided test. The final row of each panel displays corresponding results for the full
sample using the constant-parameter model. All results use a prior standard deviation of α of 5%. The middle
and lower panels report results without micro-caps and for only micro-caps. Micro-caps are defined as stocks
with a price less than $3 or a market capitalization below the 20th percentile of the NYSE capitalization.
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Table 3: Which Model Parameters are Affected by Breaks? Bayes Factors

BFmean BFσ BFλ BFα

All breaks 154.28 214.33 171.80 219.13

Jul 1972 139.71 235.17 198.95 176.32
Oct 1981 168.28 242.43 187.60 230.01
Jun 2001 183.60 189.01 132.24 265.52
Oct 2008 211.12 191.76 98.75 218.11

Table 3: Parameters affected by breaks: Bayes factors. This table displays Bayes factors that indicate the strength of
evidence in favor of our baseline model relative to each of four restricted models, including models that allow breaks only in (i)
mean coefficients, that is, α and λ (corresponding Bayes factor is denoted BFmean), (ii) volatility (BFσ), (iii) risk premia (BFλ),
and (iv) α (BFα). Results are displayed for the full sample, that is across all breaks (top row), and for each individual break (rows
2-5). Bayes factors are computed from the marginal likelihood of our baseline model and that of the restricted model. Marginal
likelihoods are computed using the method of Chib (1995). The strength of evidence in favor of our baseline model relative to the
restricted model is evaluated using the standard thresholds detailed in Kass and Raftery (1995): values greater than 20 indicate
strong evidence in favor of the baseline model.

Table 4: Fama-Macbeth Regressions of Returns on Break Risk Factor

Independent variable Break risk measures

(1) (2) (3) (4) (5)

Slope coefficients (×102) and (test-statistics)

BRK 0.57 0.52 0.28 0.52 0.50
(4.42) (4.15) (2.53) (4.08) (4.01)

BETA 0.95 1.04 0.82 0.77 0.90
(11.87) (10.66) (10.88) (12.04) (10.97)

log(B/M) 0.26 0.22 0.20 0.30 0.31
(3.14) (3.08) (2.89) (4.22) (3.86)

log(ME) -0.13 -0.10 -0.11 -0.14 -0.11
(-3.00) (-3.65) (-3.44) (-2.75) (-2.99)

PR1Y R 0.78 0.59 0.56 0.60 0.65
(3.29) (3.55) (2.87) (4.12) (3.22)

INV -0.53 -0.44 -0.46 -0.57 -0.52
(-4.46) (-4.05) (-4.84) (-3.89) (-5.00)

PRF 0.20 0.24 0.22 0.18 0.29
(2.71) (2.88) (2.54) (2.36) (3.18)

Results demeaned by industry

BRK 0.70 0.59 0.34 0.60 0.58
(5.12) (4.56) (2.78) (4.58) (4.51)

BETA 0.93 1.01 0.77 0.78 0.94
(11.08) (10.89) (10.85) (12.09) (11.42)

log(B/M) 0.28 0.23 0.27 0.30 0.35
(3.32) (3.02) (2.95) (4.23) (3.65)

log(ME) -0.14 -0.12 -0.07 -0.19 -0.14
(-3.05) (-3.66) (-3.22) (-2.76) (-3.22)

PR1Y R 0.62 0.55 0.62 0.51 0.72
(3.22) (3.53) (2.99) (3.88) (3.62)

INV -0.60 -0.38 -0.42 -0.57 -0.51
(-4.75) (-3.87) (-4.54) (-3.94) (-4.96)

PRF 0.18 0.24 0.21 0.19 0.24
(2.70) (2.92) (2.45) (2.55) (3.03)

Table 4: Fama-Macbeth regressions of returns on break risk factor. This table displays the coefficients and Newey and
West (1987) heteroscedasticity-adjusted test-statistics (in brackets below) from Fama-Macbeth regressions of firms’ returns on our
break risk factor (BRK). The first measure of the break risk factor (column 1) is computed at each time for each firm as the
difference between forecasts produced from the Bayesian panel models with and without breaks using the dividend-price ratio as
the predictor. The second measure (column 2) is the root squared difference between these forecasts. The third, fourth, and fifth
measures (columns 3-5) are the difference at each point in time between the intercept, slope, and volatility estimates, respectively,
from the panel models with and without breaks. We control for market beta, book-to-market [log(B/M)], size [log(ME)], past
performance measured over the previous year (PR1Y R), investment, and profitability. The bottom panel presents results from
the same analysis in which the break risk measure has been demeaned by industry.
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Table 5: Return Performance of Portfolios of Stocks Sorted on Break Sensitivity

Portfolio r α MKT SMB HML MOM INV PRF

All stocks

Low 0.22 -0.15 1.05 0.01 0.01 0.01 0.00 -0.01
(2.12) (-2.23) (22.06) (1.37) (3.34) (1.35) (2.05) (-0.52)

2 0.26 -0.06 0.99 0.00 0.05 0.00 0.00 -0.01
(2.06) (-2.12) (30.04) (1.70) (2.88) (0.85) (1.48) (-0.44)

3 0.34 -0.01 1.00 0.02 -0.02 -0.00 0.01 0.01
(2.54) (-1.35) (32.52) (2.00) (-0.87) (-1.11) (1.79) (1.40)

4 0.44 0.04 1.02 0.04 0.01 0.02 -0.02 0.00
(1.98) (1.08) (23.74) (1.29) (2.03) (1.71) (-2.01) (1.03)

High 0.50 0.19 1.04 -0.00 -0.02 -0.00 0.01 0.01
(2.33) (2.27) (20.10) (-1.58) (-2.57) (-0.65) (1.32) (0.99)

High-low 0.28 0.34 -0.01 -0.01 -0.03 -0.01 0.01 0.02
(2.33) (3.13) (-1.08) (-1.90) (-1.18) (-0.87) (1.66) (0.76)

Without micro-caps

Low 0.15 -0.12 0.90 0.00 0.01 0.00 0.00 -0.01
(2.38) (-2.23) (18.70) (1.62) (2.46) (1.47) (2.09) (-0.89)

2 0.22 -0.08 1.00 0.01 0.04 0.01 0.00 0.00
(2.17) (-2.44) (33.32) (1.76) (2.95) (1.22) (1.60) (0.57)

3 0.26 -0.03 0.91 0.01 -0.02 -0.01 0.00 0.02
(2.52) (-1.42) (29.87) (2.05) (-1.30) (-0.97) (1.33) (2.01)

4 0.35 0.05 1.06 0.04 0.05 -0.01 0.01 0.01
(2.17) (0.98) (22.78) (1.26) (2.07) (-1.54) (1.02) (0.85)

High 0.39 0.16 0.94 -0.00 -0.00 0.01 0.01 0.00
(2.38) (2.21) (22.01) (-1.98) (-2.50) (1.12) (1.45) (0.60)

High-low 0.24 0.28 0.04 -0.00 -0.01 0.01 0.01 0.01
(2.30) (3.08) (1.06) (-1.80) (-1.42) (1.44) (0.75) (1.45)

Table 5: Return performance of portfolios of stocks sorted on break sensitivity. This table
displays monthly value-weighted average excess returns to quintile portfolios sorted according to our
break risk factor measured through the difference in the forecasts from the panel models with and
without breaks using the dividend-price ratio as the predictor. We also report coefficients and test-
statistics (in brackets below) estimated from time-series OLS regressions of quintile portfolio returns on
the market (MKT), size (SMB), value (HML), momentum (MOM), investment (INV), and profitability
(PRF) factors sourced from Ken French’s website. The bottom panel presents results for the same
analysis removing all stocks with a price less than $3 or a market capitalisation below the 20th percentile
of the NYSE capitalisation.
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Table 6: Break Risk Correlations

mrkt bm mve mom inv prf brk

Correlations with Factors

mrkt 1 0.24 0.32 -0.34 -0.37 -0.19 0.28
bm 1 0.13 -0.42 0.67 0.08 0.24
mve 1 -0.15 -0.09 -0.34 0.18
mom 1 -0.02 0.09 -0.26
inv 1 -0.02 -0.14
prf 1 -0.07
brk 1

Correlations with Characteristics

10% 25% 50% 75% 90% max
brk 0.01 0.05 0.10 0.25 0.36 0.42

R2 0.24

Table 6: Break risk correlations. The upper panel of this table displays the correlations amongst
a number of factors, namely, the market (mrkt), book-to-market (bm), size (mve), momentum (mom),
investment (inv), profitability (prf), and our break risk factor (brk). The middle panel reports the
maximum and the 10th, 25th, 50th, 75th, and 90th percentiles of the correlations between our break
risk characteristic and the 94 characteristics considered by Green et al. (2017). The lower panel reports
the R2 from a regression of our break risk characteristic on the five characteristics with which it is
most strongly correlated, namely, in descending order: idiosyncratic return volatility, return volatility,
volatility of liquidity (share turnover), cash flow to debt, and cash flow volatility.
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Table 7: Characteristics that are Significant in Different Regimes

1980:01-1981:10 1981:11-2001:06 2001:07-2008:11 2008:12-2018:06

Panel break model

beta beta beta beta

brk brk brk

mve mve mve

bm bm bm

mom1m mom1m

sgr

retvol

turn

baspread

aeavol

agr

rdmve

roaq

cashpr

lgr

gma

hire

herf

ps

salerec

std˙dolvol

ear

chcsho

chatoia

Total 9 10 12 3

Constant-parameter model

beta brk mve bm mom1m
retvol baspread aeavol agr rdmve
roaq lgr hire herf ear

chatoia

Total 16

Table 7: Characteristics that are significant for the cross-section of expected returns in
different regimes. The upper panel of this table reports, for each regime identified by our panel break
model, the characteristics that are significant using a t-statistic threshold of three when regressing firm-
level excess stock returns on the 94 characteristics of Green et al. (2017) and our break risk factor. The
total number of selected characteristics is reported at the bottom of the table. The posterior mode break
dates occur at October 1981, July 2001, and November 2008. The characteristic definitions correspond
to those in Table A1 except for brk which denotes our break risk factor. The lower panel reports which
characteristics are selected from the constant-parameter model using a t-statistic threshold of three.
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Table 8: Portfolios Most and Least Affected by Break Risk

Portfolio Size of break rank MSFD Portfolio Size of break rank MSFD

Industries

Telcm 1 0.0222 Whlsl 25 0.0059
Util 2 0.0169 Mines 26 0.0052
Oil 3 0.0145 Textls 27 0.0045

Buseq 4 0.0141 Books 28 0.0033
Fin 5 0.0139 Meals 29 0.0028
Hlth 6 0.0137 Other 30 0.0022

Size and book-to-market

SMALL HiBM 1 0.0528 ME3 LoBM 21 0.0067
ME2 HiBM 2 0.0461 ME4 LoBM 22 0.0059

SMALL BE4 3 0.0399 BIG BE3 23 0.0049
ME2 BE4 4 0.0368 BIG BE2 24 0.0036

SMALL BE3 5 0.0290 BIG LoBM 25 0.0033

Size and momentum

SMALL LoPRIOR 1 0.0205 BIG PRIOR2 21 0.0031
ME2 LoPRIOR 2 0.0189 ME3 PRIOR4 22 0.0027

SMALL PRIOR2 3 0.0165 ME4 HiPRIOR 23 0.0025
ME2 PRIOR2 4 0.0148 BIG HiPRIOR 24 0.0018
ME2 PRIOR3 5 0.0141 BIG PRIOR4 25 0.0016

Size and investment

SMALL LoINV 1 0.0477 BIG INV3 21 0.0050
SMALL INV2 2 0.0386 ME4 HiINV 22 0.0037
ME2 LoINV 3 0.0335 ME4 INV4 23 0.0029
ME2 INV3 4 0.0318 BIG INV4 24 0.0023
ME2 INV4 5 0.0301 BIG HiINV 25 0.0021

Size and profitability

SMALL HiOP 1 0.0415 BIG OP3 21 0.0050
SMALL OP4 2 0.0387 BIG OP4 22 0.0046
SMALL OP3 3 0.0363 ME4 LoOP 23 0.0039
ME2 HiOP 4 0.0325 BIG OP2 24 0.0028
ME2 OP4 5 0.0301 BIG LoOP 25 0.0026

Table 8: Portfolios most and least affected by break risk. This table lists the upper and lower
twenty percent of portfolios according to the magnitude of the total impact of breaks on their respective
return forecasts (with 1 denoting the largest impact) for each of our five test assets. This magnitude is
captured by the mean squared forecast difference (‘MSFD’) between panel regressions with and without
breaks of excess portfolio returns on the lagged aggregate dividend-price ratio as displayed in Equation
(6). We report results for 30 industry portfolios (top panel) and 5 × 5 portfolios sorted on (i) size
and book-to-market (second panel), (ii) size and momentum (third panel), size and investment (fourth
panel), and size and profitability (bottom panel).
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Figure 1: This figure displays the posterior distribution of (i) the number of breaks and (ii) break locations
estimated from our Bayesian panel break model when regressing firm-level excess stock returns on lagged
market beta, size, value, momentum, investment, and profitability as displayed in Equation (3).
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Figure 2: The solid black lines graph the posterior mean estimates of time-varying risk premia from our
Bayesian panel break model when regressing firm-level excess stock returns on lagged market beta, size, book-
to-market, momentum, investment, and profitability in a multivariate regression as displayed in Equation
(3). The red dashed lines plot their corresponding posterior standard deviations. The solid green line in the
top left window graphs the equity premium posterior mean estimates from a corresponding CAPM panel
break regression that only includes market betas as regressors.
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Figure 3: The solid black line in the top panel of this figure graphs the aggregate volatility estimates from
our Bayesian panel break approach when regressing firm-level excess stock returns on lagged market beta,
size, value, momentum, investment, and profitability as displayed in Equation (3). The red dashed line plots
the posterior standard deviation. The aggregate volatility is estimated as the standard deviation of rzt in
each regime, expressed as an annualized percentage. The lower panel graphs the value-weighted average
of firm-level posterior mean residual volatility estimates (expressed as an annualized percentage) from the
same model.
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Figure 4: This figure displays the posterior mode break dates estimated from the Bayesian panel break
model when regressing the excess returns on 50 portfolios on the lagged aggregate dividend-price ratio as
displayed in Equation (10) by applying the methodology developed by Smith (2018a) that allows for any
subset of series in the cross-section to be hit by breaks. The 50 portfolios include 10 univariate sorts on
each of momentum (red), book-to-market (blue), size (black triangles), profitability (brown), and investment
(green).
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(d) Global Financial Crisis

Figure 5: This figure displays the posterior mode break dates estimated from the panel break model when
regressing excess returns on 30 industry portfolios on the lagged aggregate dividend-price ratio by applying
the methodology developed by Smith (2018a) that allows for any subset of series in the cross-section to
be hit by breaks at different times as displayed in Equation (11). Industry portfolio orderings follow Ken
French thus portfolio 1 is Food and 30 is Other. We display the timing for four of the most economically
interesting break dates: 1929, 1973, 2001, and 2008.
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Figure 6: This figure displays the posterior mode break dates estimated from the panel break model when
regressing excess returns on 50 style portfolios – 10 univariate sorts on each of momentum (red), book-
to-market (blue), size (black triangles), profitability (brown), and investment (green), sourced from Ken
French’s website – on the lagged aggregate dividend-price ratio by applying the methodology developed by
Smith (2018a) that allows for any subset of series in the cross-section to be hit by breaks and at different
times as displayed in Equation (11). We display the timing for four of the most economically interesting
break dates: 1929, 1973, 2001, and 2008.
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Appendix A. Likelihood function

This appendix specifies the likelihood function used to estimate our model. To this end, we

introduce some notations. Our panel break approach allows the intercepts, slope coefficients,

and variances to shift following a break. Recalling that τk refers to the date for the kth

break, the duration of the kth regime is denoted lk = τk− τk−1 and consists of observations

τk−1 + 1, . . . , τk. Let αk = (α1k, . . . , αNk), α = (α1, . . . , αK+1), λk = (λk,1, . . . , λk,J),

λ = (λ1, . . . , λK+1), σ2
k = (σ2

k1, . . . , σ
2
kN ), σ2 = (σ2

1, . . . , σ
2
K+1) denote the parameters in

the individual regimes and collect all parameters in θ = (α,λ,σ2). Finally, let Xt−1

denote the observations on the J characteristics for the N stocks at time t − 1 and define

X = (X1, . . . ,XT−1). The likelihood of the data can then be written as43

p(r |X,θ, τ) =
N∏
i=1

K+1∏
k=1

(2πσ2
ik)

lk
−2 exp

 τk∑
t=τk−1+1

(rit − αik − rzt − λ′kXit−1)2

−2σ2
ik

 .
(A.1)

Appendix B. Priors

Next, we provide details of the prior distributions used by our model.

Appendix B.1. Prior on the regime durations

Following Smith and Timmermann (2021), we place a Poisson prior distribution over the

regime durations

p(lk | γk) =
γlkk e

−γk

lk!
, k = 1, . . . ,K + 1, (B.1)

in which the Poisson intensity parameter γk has a conjugate Gamma prior distribution

p(γk) =
dc

Γ(c)
γc−1
k e−dγk , k = 1, . . . ,K + 1. (B.2)

43For expositional ease we suppress rzt herein.
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A prior belief that a break occurs, on average, every 20 years is achieved by setting c=480

and d=2.

Appendix B.2. Priors on regression coefficients

For regimes k = 1, . . . ,K + 1 and firms i = 1, . . . , N , we specify an inverse gamma prior on

the idiosyncratic residual variances

p(σ2
ik) =

ba

Γ(a)
σ2−(a+1)

ik exp

(
− b

σ2
ik

)
, (B.3)

and a Gaussian prior on the intercepts, conditional on the variances

p(αik | σ2
ik) = 2π

−1
2 (σ2

ik)
−1
2 (σ2

α)
−1
2 exp

(
α2
ik

−2σ2
ikσ

2
α

)
, (B.4)

in which a and b are the prior hyperparameters of the residual variance and σ2
α reflects the

prior belief about the degree of mispricing. To achieve a prior residual variance equal to

the variance of the return data, the prior hyperparameter a is set equal to 2 and b is set

equal to the variance of the return data across all i and t.44

Risk premium estimates have a Gaussian distribution. For regimes k = 1, . . . ,K + 1

p(λk) =
(

2π
−J
2 | Vλ |

−1
2

)
exp

(
λ′kV

−1
λ λk
−2

)
, (B.5)

in which Vλ = 1Jσ
2
λ.

Multiplying the likelihood function by the priors yields the posterior distribution. Infer-

ence is performed on the posterior distribution which is approximated using Markov chain

Monte Carlo methods.

44For the out-of-sample analysis, for this calculation we use only the return data available at the time the
model is estimated to avoid look-ahead bias.
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Appendix C. Model Estimation

Model estimation comprises three steps. First, the parameters in regimes k = 1, . . . ,K + 1

are estimated from their full conditional distributions using a Gibbs step

σ2
ik | · ∼ IG(ãik, b̃ik), i = 1, . . . , N,

αik | · ∼ N(ρik, s
2
ik), i = 1, . . . , N,

λk | · ∼ N(µk,Σk),

(C.1)

in which

Σ−1
k = V −1

λ +

τk∑
t=τk−1+1

Xt−1Xt−1
′, (C.2)

µk = Σk

τk∑
t=τk−1+1

Xt−1rt,

s−2
ik = σ−2

α + lk, i = 1, . . . , N

ρik = s2
ik

τk∑
t=τk−1+1

rit, i = 1, . . . , N

ãik = a+ lk/2, i = 1, . . . , N

b̃ik =
1

2

2b+

τk∑
t=τk−1+1

r2
it − µ′kΣ−1

k µk

 , i = 1, . . . , N

where rt denotes the excess stock returns on the N firms at time t. The second and third

steps estimate the break locations and number of breaks, respectively, in the same manner

as in Smith and Timmermann (2021) but use Equation (C.2) to compute the acceptance

probabilities.
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Appendix D. Formal definition of breaks

Our model is estimated using a reversible jump Markov chain Monte Carlo algorithm (Green

1995). This approach repeatedly attempts to ‘jump’ between models with different numbers

of breaks. With a sufficient number of iterations, the posterior model probabilities and

corresponding break locations are approximated by the proportion of iterations spent at

each number and timing of breaks.

We now formally define what constitutes a breakpoint. For each jump, whether to accept

the move (and thus introduce a different number of breaks) is determined by a Bayes factor,

the preferred Bayesian model comparison method.

Suppose we attempt to jump from K to K∗ breaks. The Bayes factor is a likelihood

ratio of the model with K∗ breaks and the model with K breaks. The posterior probability

of model K, MK , having observed the data (r,X) is

Pr(MK | r,X) =
Pr(r,X |MK)Pr(MK)

Pr(r,X)
, (D.1)

the elements of which can be approximated using the marginal likelihood approach of Chib

(1995).

The probability of accepting the jump from K breaks to K∗ breaks is reflected in the

Bayes factor

BFMK ,MK∗ =

∫
Pr(θK∗ |MK∗)Pr(r,X | θK∗ ,MK∗)dθK∗∫

Pr(θK |MK)Pr(r,X | θK ,MK)dθK
=

Pr(MK∗ | r,X)Pr(MK)

Pr(MK | r,X)Pr(MK∗)
. (D.2)

Assuming equal prior model probabilities, Pr(MK) = Pr(MK∗), the Bayes factor will equal

the ratio of posterior probabilities of the respective models.

Two advantages of the Bayes factor approach are, first, that it automatically penalizes

model complexity to guard against overfitting, and thus does not rely on ad hoc penalty

terms. Second, it does not depend on a single set of parameters as it integrates over

all parameters in each model with respect to their priors, thus accounting for parameter

uncertainty.
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Appendix E. Out-of-sample Return Forecasts and Portfolio Implications

This appendix analyzes the out-of-sample accuracy of the return forecasts generated by our

panel break model and examines some investment implications of these forecasts.

Appendix E.1. Accuracy of out-of-sample return forecasts

We begin by evaluating the out-of-sample forecast accuracy of our panel break model and

comparing it to a range of alternative specifications that either are simpler versions of our

general specification – allowing us to identify the features of our model that are particularly

important – or use a different approach to capture time variation in expected returns.

Specifically, we compare our approach to four benchmarks: a univariate time series break

model, a constant-parameter panel model, a time-varying parameter model featuring small

changes to the parameters every period, and the (time series) historical average.45

Using a warm-up period of ten years, forecasts are generated by recursively estimating

each month with historically available data our model and the benchmark forecasting models

based on the specification in Equation (6). Forecasts from our model incorporate any

uncertainty surrounding the number and timing of breaks as well as parameter uncertainty.

Market portfolio forecasts are constructed as the value-weighted average of the portfolio-

level forecasts.

To evaluate whether any improved predictive accuracy is statistically significant, we

use the test statistic of Clark and West (2007) that accounts for our forecasting models

being nested which can lead conventional test statistics to have nonstandard distributions.

Against the four benchmarks, we find that the panel break model performs significantly

better out-of-sample at the 10% critical level for between 25 and 27 of the 31 industry port-

folios (including the market portfolio). Our panel break model also produces significantly

better return forecasts for between 20 and 22 of the 26 portfolios sorted on size and value

45The time series break model is estimated using the Bayesian algorithm of Chib (1998). The constant-
parameter panel model is our baseline model that precludes breaks, and the time-varying parameter model
is that set out in Equation (4). The priors in each of these three benchmarks are specified such that
they correspond to those in the baseline model. Consistent with our panel break model, the time-varying
parameter model shows considerable evidence of parameter instability and a notable downward drift in the
risk premium estimates of the equity, value, and size premia.
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and for between 22 and 23 of the 26 portfolios sorted on size and momentum. Across all 83

portfolios and four benchmark models (332 cases), return forecasts from our model never

significantly underperform.

Appendix E.2. Investment Implications

We next explore the economic significance of our model’s return forecasts for a risk-averse

mean-variance investor who allocates her portfolio every month between the riskless asset

and a risky portfolio constructed from each set of test portfolios. In each month t, the risky

portfolio is constructed as the vector of weights ωt chosen to maximize the expected utility

from the return on the risky portfolio next month, rp,t+1:

E[U(rp,t+1 | A)] = rf,t + ω′tr̂t+1 −
A

2
ω′tŜtωt. (E.1)

Here rf,t denotes the risk-free rate in month t, r̂t+1 denotes the vector of return forecasts

for month t+ 1 computed using information available at month t, Ŝt denotes the covariance

matrix that is estimated using the residuals from the return prediction model at month t,

and A denotes the risk aversion coefficient which is set equal to three following Campbell

and Thompson (2008). We constrain the portfolio weights to sum to one and rule out any

short selling or leverage.

Compared to the optimal portfolio weights based on historical averages of the moment

estimates, the average industry allocations based on our out-of-sample panel break return

forecasts are substantially higher for the smoke, telecommunications, services, and financial

industries. Conversely, the weights are lower for beer, healthcare, autos, and business

equipment.46 Certainty equivalent returns of the panel break model are about 2% per

annum higher than that of the alternative benchmarks.

Undertaking a similar investment exercise on the 25 (5 × 5) portfolios sorted on size

and value, we compute portfolio allocations across the five portfolios comprising (i) the

smallest stocks and (ii) stocks with the highest book-to-market ratios, on average, for the

first and final decades of our out-of-sample period. Average allocations to the five smallest

46A full set of results is presented in Web Appendix Table A3.
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stock portfolios declined from 40% to just 6% from the first to the final decade. Similarly,

average allocations to the highest book-to-market ratio (value) stock portfolios declined

from 42% to 4%. These shifts in allocations are driven by the systematic decline in the size

and value premia identified in our empirical analysis.47

For 5 × 5 portfolios sorted on both size and book-to-market and size and momentum, we

find utility gains in the neighborhood of 2% per annum relative to the four benchmarks. The

panel break model could therefore have been used in real time to generate return forecasts

that, when implemented in a simple investment strategy, produce sizeable economic gains.

Finally, for 5 × 5 portfolios sorted on size and investment, utility gains relative to the

four benchmarks range between 1.1 and 2.2% per annum, averaging 1.62%. For the 5 ×

5 portfolios sorted on size and profitability, certainty equivalent returns range between 1.3

and 1.9%, averaging 1.47% per annum.

Appendix E.3. Rotation of Portfolio Allocations

To better understand what generates the utility gains associated with our model’s return

forecasts, we next consider how the portfolio weights change around break points. To this

end, Table A4 reports the average allocation in three-year windows before and after the

three most recent breaks in our sample. For each set of test assets, we limit the results

to the five portfolios whose portfolio allocations are most strongly affected by these three

breaks. For the industry portfolios (top panel), weights were significantly reduced for oil

and chemical stocks after the 1973 oil price shock while the allocations to financial, services,

and telecommunication stocks came down significantly following the break associated with

the end of the dotcom bubble. Finally, financial, services and oil stocks all saw reduced

allocations after the break associated with the GFC. Figure A2 complements these findings

by showing 36-month trailing moving average estimates of the portfolio allocations to the

industry whose portfolio allocation is most strongly affected by each of the breaks.

A similar rotation is seen among the style-sorted portfolios (second through fifth panels

of Table A4): Following all three breaks, we see a large reduction in the allocation to large

47We find a similar shift away from the smallest stocks for the 25 portfolios sorted on size and momentum.
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stocks with low prior returns. Moreover, the 1973 break induces a sharp reduction in large

growth stocks, while conversely the 2001 and 2008 breaks lead to a significant decline in

the allocation to large value stocks. The last two breaks also see a sizeable reduction in the

allocation to the stocks of firms with conservative investments and robust profits.

These results demonstrate significant rotation in the optimal portfolio weights around

the time of the breaks identified by our panel break methodology.
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Table A1: Firm Characteristic Acronyms and Definitions

Acronym Definition Acronym Definition

absacc Absolute accruals mom1m 1-month momentum
acc Working captial accruals mom36m 36-month momentum
aeavol Abnormal earnings announcement volume ms Financial statement score
age no. years since first Compustat coverage mve Size
agr Asset growth mve ia Industry-adjusted size
baspread Bid-ask spread nanalyst Number of analysts covering stocks
beta Beta nincr Number of earnings increases
bm Book-to-market operprof Operating profitability
bm ia Industry-adjusted book-to-market orgcap Organisational capital
cash Cash holdings pchcapx ia Industry-adjusted ∆% in capital exps.
cashdebt Cash flow to debt pchcurrat ∆% in current ratio
cashpr Cash productivity pchdepr ∆% in depreciation
cfp Cash-flow-to-price ratio pchgm pchsale ∆% in gross margin - ∆% in sales
cfp ia Industry-adjusted cash-flow-to-price ratio pchsale pchinvt ∆% in sales - ∆% in inventory
chatoia Industry-adjusted ∆ in asset turnover pchsale pchrect ∆% in sales - ∆% in A/R
chcsho ∆ in shares outstanding pchsale pchxsga ∆% in sales - ∆% in SG&A
chempia Industry-adjusted change in employees pchsaleinv ∆% sales-to-inventory
chfeps ∆ in forecasted EPS pctacc Percent accruals
chinv ∆ in inventory pricedelay Price delay
chmom ∆ in 6-month momentum ps Financial statements score
chnanalyst ∆ in number of analysts rd R&D increase
chpmia Industry-adjusted ∆ in profit margin rd mve R&D to market capitalisation
chtx ∆ in tax expense rd sale R&D to sales
cinvest Corporate investment realestate Real estate holdings
convind Convertible debt indicator retvol Return volatility
currat Current ratio roaq Return on assets
depr Depreciation/PP&E roavol Earnings on volatility
disp Dispersion in forecasted EPS roeq Return on equity
divi Dividend initiation roic Return on invested capital
divo Dividend omission rsup Revenue surprise
dy Dividend to price salecash Sales to cash
ear Earnings to announcement return saleinv Sales to inventory
egr Growth in common shareholder equity salerec Sales to receivables
ep Earnings to price secured Secured debt
fgr5yr Forecasted growth in 5-year EPS securedind Secured debt indicator
gma Gross profitability sfe Scaled earnings forecast
grCAPX Growth in capital expenditures sgr Sales growth
gr1tnoa Growth in long-term net operating assets sin Sin stocks
herf Industry sales concentration sp Sales to price
hire Employee growth rate std dolvol Volatility of liquidity ($ trading volume)
idiovol Idiosyncratic return volatility std turn Volatility of liquidity (share turnover)
ill Illiquidity stdcf Cash flow volatility
indmom Industry momentum sue Unexpected quarterly earnings
invest Capital expenditures tang Debt capacity / firm tangibility
IPO New equity issue tb Tax income to book income
lev Leverage turn Share turnover
mom12m 12-month momentum zerotrade Zero trading days

Table A1: Firm characteristic acronyms and definitions. This table provides acronyms and
definitions for the 94 firm characteristics considered in our study, and corresponds to Table 1 of Green
et al. (2017).
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Table A2: Cross-sectional Distribution of σα Estimates

Regime 5% 10% 25% Median 75% 90% 95%

All stocks

1950:01-1972:07 0.65 1.12 1.63 1.88 3.12 5.85 8.21

1972:08:-1981:10 0.97 1.35 2.21 2.98 4.49 6.87 9.76

1981:11-2001:06 0.73 1.24 1.66 1.97 3.76 6.11 8.49

2001:07-2008:10 1.43 1.89 3.02 4.27 6.08 8.91 11.46

2008:11-2018:06 0.90 1.34 2.03 2.67 4.21 6.59 9.34

Full sample 0.42 0.84 1.15 1.36 2.47 3.92 5.87

Larger stocks (Micro-caps excluded)

1950:01-1972:07 0.49 0.87 1.32 1.48 2.85 4.67 7.68

1972:08:-1981:10 0.86 1.27 2.01 2.67 3.90 6.09 8.42

1981:11-2001:06 0.60 1.03 1.32 1.65 3.32 5.48 7.21

2001:07-2008:10 1.17 1.46 2.65 3.81 5.29 7.44 9.89

2008:11-2018:06 0.70 1.12 1.75 2.27 3.99 5.28 8.01

Full sample 0.29 0.70 0.95 1.20 2.10 3.22 4.97

Micro-caps

1950:01-1972:07 1.20 2.13 2.73 3.57 4.41 8.15 9.89

1972:08:-1981:10 1.41 1.75 3.25 4.08 6.17 8.77 12.36

1981:11-2001:06 1.18 2.17 3.16 4.05 5.44 8.00 12.19

2001:07-2008:10 2.44 3.36 4.87 5.34 8.22 13.06 18.06

2008:11-2018:06 1.50 1.99 2.87 4.14 5.32 8.94 13.04

Full sample 0.83 1.34 1.69 2.17 3.67 6.24 8.76

Table A2: Cross-sectional distribution of σα estimates. The top panel of this table displays, for each of the
five regimes, the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of the posterior standard deviation of the
αi estimates from our Bayesian panel break approach when regressing firm-level excess returns on market beta,
size, value, momentum, investment, and profitability as displayed in Equation (3). All values are in annualized
percentage terms. The final row of each panel displays corresponding results for the full sample using the constant-
parameter model. All results use a prior standard deviation of α of 5%. The middle and lower panels report
results without micro-caps and for only micro-caps. Micro-caps are defined as stocks with a price less than $3 or
a market capitalization below the 20th percentile of the NYSE capitalization.
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Table A3: Allocations across portfolio sorts

Portfolio Brk Hist avg

Industries

food 0.00 0.01

beer 0.16 0.23

smoke 0.15 0.09

books 0.02 0.00

hlth 0.00 0.06

chems 0.06 0.14

elceq 0.01 0.02

autos 0.00 0.07

oil 0.06 0.04

telcm 0.06 0.03

servs 0.34 0.15

buseq 0.07 0.11

paper 0.00 0.02

fin 0.06 0.00

Size and book-to-market

SMALL ME2 ME3 ME4 BIG SMALL ME2 ME3 ME4 BIG

LoBM 0.04 0.01 0.00 0.00 0.00 0.03 0.03 0.03 0.03 0.02

BE2 0.03 0.02 0.02 0.00 0.00 0.02 0.04 0.04 0.03 0.02

BE3 0.07 0.04 0.04 0.02 0.00 0.05 0.04 0.04 0.04 0.03

BE4 0.07 0.07 0.05 0.03 0.02 0.05 0.05 0.05 0.04 0.03

HiBM 0.14 0.13 0.10 0.06 0.04 0.07 0.06 0.05 0.05 0.05

Size and momentum

SMALL ME2 ME3 ME4 BIG SMALL ME2 ME3 ME4 BIG

LoPRIOR 0.11 0.13 0.08 0.05 0.05 0.05 0.02 0.01 0.01 0.00

PRIOR2 0.09 0.07 0.05 0.05 0.02 0.07 0.04 0.04 0.02 0.01

PRIOR3 0.04 0.03 0.03 0.02 0.02 0.07 0.04 0.03 0.03 0.02

PRIOR4 0.05 0.03 0.02 0.01 0.00 0.07 0.05 0.04 0.04 0.03

HiPRIOR 0.02 0.01 0.02 0.00 0.00 0.08 0.06 0.06 0.06 0.04

Table A3: Allocations across portfolio sorts. The top panel of this table reports the weight allo-
cations, averaged across the out-of-sample period, to the 30 industry portfolios. We display allocations
obtained from our panel break model (Brk) model displayed in Equation (6) and the prevailing mean
(Hist avg). Industries that are assigned less than 0.01 weight by both models are omitted. The middle
panel displays the allocations across the 25 portfolios sorted on size and book-to-market. The lower
panel displays the allocations across the 25 portfolios sorted on size and momentum.
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Table A4: Portfolio Allocations Around Breaks

Portfolio 1973 2001 2008
pre post pre post pre post

Industries

fin 0.04 0.02 0.07 0.03 0.07 0.02
servs 0.24 0.27 0.28 0.16 0.18 0.12
telcm 0.07 0.08 0.16 0.03 0.05 0.05
oil 0.14 0.01 0.04 0.05 0.08 0.02
chems 0.09 0.02 0.01 0.02 0.03 0.00

Size and momentum

BIGLoPRIOR 0.07 0.02 0.01 0.00 0.03 0.00
BIGPRIOR2 0.00 0.00 0.05 0.02 0.04 0.00
BIGPRIOR3 0.04 0.02 0.08 0.03 0.05 0.00
ME4LoPRIOR 0.11 0.07 0.23 0.12 0.13 0.01
ME4PRIOR2 0.14 0.01 0.06 0.02 0.04 0.01

Size and book-to-market

BIGLoBM 0.03 0.02 0.04 0.01 0.01 0.00
BIGBE2 0.00 0.00 0.05 0.02 0.01 0.00
BIGBE3 0.01 0.00 0.02 0.00 0.04 0.02
BIGBE4 0.08 0.08 0.14 0.05 0.08 0.03
ME4BE2 0.19 0.04 0.08 0.03 0.03 0.00

Size and investment

BIGLoINV 0.11 0.05 0.04 0.02
BIGINV2 0.07 0.03 0.02 0.00
BIGINV4 0.09 0.04 0.03 0.01
ME4LoINV 0.10 0.05 0.07 0.03
ME4INV2 0.06 0.02 0.02 0.01

Size and profitability

BIGHiOP 0.12 0.01 0.02 0.00
ME4HiOP 0.14 0.04 0.05 0.02
ME4OP4 0.10 0.03 0.03 0.00
BIGOP3 0.09 0.04 0.06 0.02
BIGOP4 0.08 0.04 0.05 0.02

Table A4: Portfolio allocations pre- and post-breaks. This table displays real time allocations
to various portfolio sorts averaged across the 36 months before and after the full sample posterior mode
break dates in 1973, 2001, and 2008. Allocations are generated from recursively estimating the panel
breakpoint model specification in Equation (6) using only data available at the time each forecast is
made. Forecasts are generated separately for the five test assets: 30 industry portfolios (top panel) and
5 × 5 portfolios sorted on size and momentum (second panel), size and book-to-market (third panel),
size and investment (fourth panel), and size and profitability (bottom panel). For each of the five test
assets, allocations across the 30 (or 25) portfolios are constrained such that they sum to one and any
short selling or leverage is precluded. For each of the five test assets, we report results for the five
portfolios whose allocations are most affected by the breaks in 1973, 2001, and 2008.69



4
5

6
7

Month

E
qu

ity
 r

is
k 

pr
em

iu
m

 (
%

 p
er

 a
nn

um
)

Jan1950 Jan1970 Jan1990 Jan2010

CAPM
6−factor

(a) Equity premium

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Month

V
al

ue
 p

re
m

iu
m

 (
%

 p
er

 a
nn

um
)

Jan1950 Jan1970 Jan1990 Jan2010

(b) Value premium

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Month

S
iz

e 
pr

em
iu

m
 (

%
 p

er
 a

nn
um

)

Jan1950 Jan1970 Jan1990 Jan2010

(c) Size premium

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Month

M
om

en
tu

m
 p

re
m

iu
m

 (
%

 p
er

 a
nn

um
)

Jan1950 Jan1970 Jan1990 Jan2010

(d) Momentum premium
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(e) Investment premium
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(f) Profitability premium

Figure A1: The solid black lines in this figure graph the posterior mean estimates of time-varying risk premia
from our Bayesian panel break model when regressing firm-level excess stock returns on lagged market beta,
size, value, momentum, investment, and profitability in a multivariate regression as displayed in Equation
(3) but using a prior expected regime duration of 10 years rather than 20 years which is used in the baseline
model. The solid green line in the top left window graphs the equity premium posterior mean estimate from
a corresponding CAPM panel break regression that only includes market betas as regressors.
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(a) Oil price shock
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(b) Dotcom bubble
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(c) Global financial crisis

Figure A2: This figure displays portfolio weights for a subset of industries around the break dates identified
in 1973 (top window), 2001 (middle), and 2008 (lower). Specifically, we graph the 36-month trailing moving
average of real-time monthly portfolio weights that are allocated between the 30 industries in the multi-asset
portfolio. Allocations are generated from recursively estimating the panel breakpoint model specification in
Equation (6) using only data available at the time each forecast is made. Allocations across the 30 portfolios
are constrained such that they sum to one and any short selling or leverage is precluded. We display results
for the industries whose portfolio allocations are most affected by each break.
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